

Dell Technical Marketing – Data Center Networking
February 2013

Bare Metal Provisioning 3.0

Automating the Network

Overview, Implementation & Use Cases

Bare Metal Provisioning 3.0

ii

This document is for informational purposes only and may contain typographical errors. The
content is provided as is, without express or implied warranties of any kind.

© 2013 Dell Inc. All rights reserved. Dell and its affiliates cannot be responsible for errors or omissions
in typography or photography. Dell, the Dell logo, and PowerEdge are trademarks of Dell Inc. Intel and
Xeon are registered trademarks of Intel Corporation in the U.S. and other countries. Microsoft,
Windows, and Windows Server are either trademarks or registered trademarks of Microsoft
Corporation in the United States and/or other countries. Other trademarks and trade names may be
used in this document to refer to either the entities claiming the marks and names or their products.
Dell disclaims proprietary interest in the marks and names of others.

February 2013 | Rev 1.0

Bare Metal Provisioning 3.0

iii

Contents
Overview ... 4

Requirements & BMP Process ... 4

Why & When to Use BMP .. 5

Use Cases & Code ... 5

Use Case 1: Check for the latest FTOS image and download and apply configuration file 6

Use Case 2: Check for the latest FTOS image and download and run script file for automated
 pre-requisite checks and, if pre-requisites are met, apply configuration 10

Use Case 3: Check for the latest FTOS image and download and run script file for automated
 pre-requisite checks and, if pre-requisites are met, download and apply the full
 configuration file. Lastly, download and run a post-configuration script file to
 confirm successful configuration and status. .. 23

Conclusion ... 41

Appendix A: Installing a DHCP server ... 42

Appendix B: Installing a FTP server ... 43

Figures
Figure 1: BMP Lab Setup ... 6

Figure 2: Confirm ‘reload-type’ is set to ‘BMP’ mode .. 8

Figure 3: Change the 'reload-type' to BMP .. 8

Figure 4: BMP in process ... 9

Figure 5: Manually confirm BGP and OSPF neighbors and communication across downstream VLT 9

Figure 6: Script communicates prerequisite check failed and sends the log file to an FTP server 12

Figure 7: Prerequiste check passes and script starts to configure switch 12

Figure 8: Partial snapshot of post-configuration log file ... 40

Figure 9: Installing 'dhcpd' on CentOS ... 42

Figure 10: Installing 'vsftpd' on CentOS .. 43

Figure 11: Editing the 'vsftpd.conf' file .. 43

Bare Metal Provisioning 3.0

4

Overview
In today’s fluid, automated, and highly reliable enterprise and data center environments, the ability to
quickly provision network devices without user intervention has become paramount. Virtualization and
cloud computing have been key drivers to rethinking network architecture and automating tasks that
only a few years back would be time consuming and laborious. No longer is it required for a network
engineer to go from switch to switch entering redundant commands or manually configuring each
switch to meet network requirements.

With Open Automation, Dell Networking provides a solution for network provisioning that extends far
beyond the basic requirements of network device configuration.

Imagine being able to simply rack, connect, and
plug-in a switch, and have the switch take care of
everything else. Imagine the switch self-testing all
the basic connectivity requirements before
downloading and applying the latest operating
system image and correct configuration from a
server. Further, imagine the switch self-testing the
connectivity and functionality before sending the log
file to an FTP server so the network engineer can
know of the deployment results. This is the power of
Bare Metal Provisioning 3.0 (BMP) that is part of
Dell’s Open Automation Framework.

Requirements & BMP Process
BMP is embedded in the latest FTOS image on every Dell S55, S60, S4810, S4820T, Z9000, and MXL
blade switch, and it promises to save time, decrease downtime, cut costs, and provide reliability. BMP
3.0, which includes the additional functionality to download a script file instead of just a config file as
in prior versions, is currently only available on the S4810 and Z9000 starting in FTOS 9.1.

Warranted by the trend and demand in the industry for automated services, BMP is the default boot
mode on all supported Dell switches running the latest FTOS image. This means the following will
occur when the switch boots-up:

1. When the switch boots up in BMP mode, all ports, including management ports, are placed in L3
 mode in a ‘no shut’ state. The switch acts as a DHCP client on these ports for a period of time
 (dhcp-timeout). This allows the switch time to send out a DHCP DISCOVER on all ‘up’ interfaces to
 the DHCP Server in order to obtain its IP address, boot image file, and configuration/script file
 from the DHCP server. A DHCP request will be sent out on all ports.

2. The port that receives the first DHCP offer with a valid payload that contains the FTOS image info
 and config/script file path info will remain up and acquire the respective IP address based on the
 MAC address match in the ‘dhcpd.conf” file. The other ports will be shut down.

3. The respective FTOS image will be downloaded and installed if it is different than what is already
 on the switch, and the respective config/script file will be downloaded and applied. Note, even if
 the FTOS image is an older image, it will still be applied since it’s different than what is installed
 on the switch.

4. The IP address will be released back into the DHCP pool.

Bare Metal Provisioning 3.0

5

BMP is able to accomplish its tasks while taking careful security provisions. The scripts employed via
BMP are run by a special system user, ‘bmpuser’, which cannot be used outside of the BMP process.

For BMP to work, a DHCP server must be setup and properly configured with the relevant information
to respond to DHCP requests via the BMP process. Additionally, a FTP server needs to be setup to
store the FTOS image and configuration or script files(s) used by BMP; other protocols such as TFTP,
SFTP, HTTP, and HTTPS are also supported. Instructions on how to setup DHCP and FTP are provided
in Appendix A and Appendix B.

Why & When to Use BMP
BMP improves accessibility to the switch by automatically loading pre-defined configurations and boot
images that are stored on a file server. Additionally, new in BMP 3.0, scripts can be downloaded upon
switch boot-up so that automated testing and configuration can be performed.

Some important drivers pushing the use of technologies like BMP are:

o Simplified and fast deployment – simply storing all the information to configure multiple
switches on a centralized server and having switches pull the information and automatically
test for prerequisites and configure themselves drastically cuts down on deployment and
down-time.

o Prevent errors – no longer is it necessary to worry about end-user configuration errors; the
configuration is written and tested once and stored on the DHCP server for consistently
applying the same known working configuration when needed.

o Decreased IT management cost – this benefit directly correlates to the decreased overhead
needed to manage switches. The configuration or script only needs to be written once and
saved on the DHCP server. The same configuration can easily be applied to multiple switches
or different switches may be set to download different configuration or script files. The more
efficient management and less overhead directly correlate to cost savings.

BMP is especially desirable for virtualized data centers where automation is used heavily. It assists in
automating the network by providing the ability for scripts to run automatically upon switch boot-up;
this provides automated testing and configuration capabilities that ensure reliability and minimal
downtime. With the ability to download a script upon boot-up, a switch can make an intelligent
decision on the appropriate action or configuration to apply based on the status of the surrounding
environment.

Use Cases & Code
For all use cases in demonstrating BMP we will use the lab diagram below that is restricted to a small
subsection of a possibly larger network design such as a spine and leaf architecture. The lab setup
consists of four main parts:

 Management Network

 L2 LAN

 L3 core which may be part of a larger spine and leaf network

 BGP internet connection to the ISP

Bare Metal Provisioning 3.0

6

Figure 1: BMP Lab Setup

As you can see from the above diagram, switch ‘S4810-1’ is the switch in our network that will be used
to demonstrate BMP. The surrounding switches in the network are already configured respectively
with LLDP, VLT, OSPF, and BGP. In this lab we will demonstrate auto-configuration of switch ‘S4810-1’
using BMP. The three use cases that will be demonstrated in detail are:

1. Check for the latest FTOS image and download and apply configuration file

2. Check for the latest FTOS image and download and run script file for automated pre-requisite
checks and, if pre-requisites are met, apply configuration via scripting

3. Check for the latest FTOS image and download and run script file for automated pre-requisite
checks and, if pre-requisites are met, download and apply the full configuration file. Lastly,
download and run a post-configuration script file to confirm successful configuration and
status.

For the most up-to-date code related to the scripts in this whitepaper, download the file titled
“BMP_3_0_Whitepaper_Scripts.zip” from the Dell TechCenter script site located at:

http://en.community.dell.com/techcenter/networking/m/force10_networking_scripts/default.aspx

Use Case 1: Check for the latest FTOS image and download and apply configuration file

This will be our simplest use case in which we check the DHCP server for the latest FTOS image and
download the configuration file for the switch. Note that the FTOS image will only be downloaded if it
is a different image than the one already installed on the switch. For detailed instructions on how to
install a DHCP and FTP server to use with BMP see “Appendix A: Installing a DHCP Server” and
“Appendix B: Installing a FTP Server”.

http://en.community.dell.com/techcenter/networking/m/force10_networking_scripts/default.aspx

Bare Metal Provisioning 3.0

7

Below is the content of the ‘dhcpd.conf’ file on our CentOS Linux server. The only section you will
need to change in this file for your environment is the section for the range of IP addresses for the
DHCP server to use and the specific host information section. Note, below, we only have one host
section starting with ‘host S4810-1’ listed as for this example we’re only using BMP with one switch.
However, if you had three switches using BMP, you would simply copy and paste this host section two
more times and update the respective fields. We provided a hostname of “host S4810-1” for reference,
but this information is not used by BMP for anything so you can name it as you wish for reference
purposes.

The ‘hardware Ethernet’ field is one of the most important fields in the host section as this is how the
DHCP server will know what image file and config/script file to use with what switch. The ‘hardware
Ethernet’ field should be set to the MAC address of the switch interface for the switch that will use the
respective FTOS image and config/script file listed. Note, all interfaces have the same MAC address.

Also, in the host section, the ‘filename’ field should be set to the FTOS image path and the ‘option
configfile’ field should be set to the config/script file path. In this use case we are simply downloading
a config file, but in the next use case we will update the ‘option configfile’ field to point to a script file.
The ‘fixed-address’ field needs to be set to the IP address we want the switch to receive and use to
communicate with the DHCP and FTP server.

Code Snippet 1: ‘dhcp.conf’ from CentOS Linux server

As you can see from the above, the switch with the interface mac-address of (00:01:e8:8a:de:50) is set
to receive the ‘10.11.129.215’ IP address once the DHCP request from the switch is received. Further,

#dhcp.conf file

ddns-update-style none;
ignore client-updates;

option configfile code 209 = text;

default-lease-time 100000; # 24 hours
max-lease-time 200000; # 48 hours

#range of IP addresses for DHCP server use and additional options
subnet 10.11.128.0 netmask 255.255.252.0
{
 range 10.11.129.1 10.11.129.253;
 option domain-name-servers 10.11.127.1;
}

#the host to use the below values for will be matched via interface mac-address
host S4810-1
{
 #interface mac-address of switch that matches this host
 hardware ethernet 00:01:e8:8a:de:50;

 #ip address that DHCP server will assign host that has above interface mac-address
 fixed-address 10.11.129.215;

 #FTOS image path to check for latest FTOS image
 filename "ftp://labadmin:password@10.11.129.100/FTOS_Image.bin";

 #configuration file or script file to be applied to the host
 option configfile "ftp://labadmin:password@10.11.129.100/scripts/S4810-1.conf";
}

Bare Metal Provisioning 3.0

8

you can see that the DHCP server will check the image named ‘FTOS_Image.bin’ to see if it is different
than the image already installed on the switch. If it is, the image will be downloaded and installed to
the switch making the request and matching the respective mac-address. Also, note that the DHCP
server is set to send the configuration file titled ‘S4810-1.conf’ to the switch.

Before reloading the switch we need to confirm that the FTP server is running and has the respective
files in place. Additionally, we need to confirm that the switch is set to BMP mode. Checking the BMP
mode can be accomplished via the ‘show reload-type’ command from Exec Privilege mode or ‘enable’
mode as shown below.

Figure 2: Confirm ‘reload-type’ is set to ‘BMP’ mode

If needed, we can change the ‘reload-type’ to ‘BMP’ mode as shown below in configuration mode.

Figure 3: Change the 'reload-type' to BMP

Notice from the above, if desired, we can disable the option to download the configuration file. This
is important to remember and can come in handy if we make changes after the configuration file is
initially downloaded. We need to disable the configuration file download to prevent future switch
reloads from pulling the initial configuration file down again and overwriting any changes we made.
If desired, we can also completely disable BMP by setting the ‘reload-type’ to ‘normal’ instead of
‘bmp’.

Now that we confirmed all is good, we can go ahead and reload the switch with the ‘reload’ command
from Exec Privilege/‘enable’ mode. As the switch reloads and starts to come back up, the switch will
send out a DHCP request on all ports, and the DHCP server will assign the respective IP address based
on the mac-address lookup it performs. In our case, the image is the same so no image will be
downloaded; however, the configuration file needed for our lab setup shown in Figure 1 will be
downloaded and applied.

As the switch loads and downloads the config file, the BMP process output will be seen as shown
below. Notice, the switch does not hold on to the IP address given to it by the DHCP server; it simply
uses the IP address to download the needed files and then releases it. However, in our case, the
configuration file assigns the same IP address to the management interface.

Bare Metal Provisioning 3.0

9

Figure 4: BMP in process

If we want to stop BMP after the switch has already reloaded in BMP mode, we can use the “stop
bmp” command from Exec Privilege/‘enable’ mode. We can do this even after a script has started
executing.

Use Case 1 demonstrated a simple but extremely powerful method for automating the configuration
of multiple switches. Rather than manually applying configurations to each switch, simply load all the
configs on a DHCP server, and, when needed, plug in the switch in its respective place in the network,
and let BMP take care of the rest.

We know that this switch is in a crucial location in the network. We also know what OSPF and BGP
neighbors it should have and that it should be able to communicate to nodes across the VLT link
employed by its downstream switches. We can manually check this on the switch as shown below;
however, in one of our later use cases we’re going to use BMP to run a script that automates tasks like
this for us.

Figure 5: Manually confirm BGP and OSPF neighbors and communication across downstream VLT

Bare Metal Provisioning 3.0

10

Use Case 2: Check for the latest FTOS image and download and run script file for automated

 pre-requisite checks and, if pre-requisites are met, apply configuration

In this second use case, instead of pulling a configuration file from the DHCP server, we make things a
little more dynamic by pulling an Expect script from a server and having it check some pre-
configuration requirements. If the prerequisites are met, the configuration is applied, otherwise, it is
not.

BMP supports Tcl, Expect, and Zsh scripts; in this use case we use Expect which is an extension to the
Tcl scripting language. Expect is an extremely easy to learn and rapid development scripting language
specifically designed for testing and automation in regards to interactive programs. It is preferable to
use for the quickest results with the most minimal lines of code and time investment.

For this use case, the first thing we have to do is update the DHCP server ‘dhcpd.conf’ file to pull an
Expect script to apply instead of just a configuration file. Code Snippet 2 below shows this update. You
can see the only update made was to replace the referenced ‘S4810-1.conf’ config file with a
reference to an Expect script, ‘S4810-1-conf.exp’.

Code Snippet 2: ‘dhcp.conf’ from CentOS Linux server

Now the more interesting part is definitely the Expect script, ‘S4810-1-conf.exp’, shown in its entirety
in Code Snippet 3. As you can see the script is composed of multiple functions/procedures which
each complete a specific task. All the functions except the first, which we’ll discuss in a moment, are
grouped in one of three groups:

#dhcpd.conf file

ddns-update-style none;
ignore client-updates;

option configfile code 209 = text;

default-lease-time 100000; # 24 hours
max-lease-time 200000; # 48 hours

#range of IP addresses for DHCP server use and additional options
subnet 10.11.128.0 netmask 255.255.252.0
{
 range 10.11.129.1 10.11.129.253;
 option domain-name-servers 10.11.127.1;
}

#the host to use the below values for will be matched via interface mac-address
host S4810-1
{
 #interface mac-address of switch that matches this host
 hardware ethernet 00:01:e8:8a:de:50;

 #ip address that DHCP server will assign host that has above interface mac-address
 fixed-address 10.11.129.215;

 #FTOS image path to check for latest FTOS image
 filename "ftp://labadmin:password@10.11.129.100/FTOS_Image.bin";

 #configuration file or script file to be applied to the host
 option configfile "ftp://labadmin:password@10.11.129.100/scripts/S4810-1-conf.exp ";
}

Bare Metal Provisioning 3.0

11

1. Logging Functions

2. Prereq Check Functions

3. Config Functions

The ‘Logging Functions’ include functions that are used for logging the status/progress of the
script/configuration to a file and sending it to a FTP server upon completion. The ‘Prereq Check
Functions’ are used to check prerequisites the switch should meet before the full configuration is
applied. The ‘Config Functions’ are used to complete the full configuration of the switch if the
prerequisite checks pass. Note that there is no separate configuration file; the script creates the
configuration on the fly if the prerequisite checks pass.

Note the ‘#!/usr/bin/expect’ and ‘#/DELL-FORCE10’ lines on the top of the script file are required. The
first line is specific to where the script can find the Expect interpreter that will run the script. The
second line is required only if the script file is a pre-configuration script file which it is in this case.

The very first function titled ‘execFtosCommand’ is a very important function called throughout the
program. The function is passed an argument which contains a FTOS command to be run on the
switch. The function runs the command and displays the resulting FTOS output. In order to
accomplish this task a lot of details are taken care of behind the scenes by use of a special FTOS
command used within the function.

Within the ‘execFtosCommand’ function, the Tcl ‘exec’ command is used to call a program from
within the shell. FTOS is based on NetBSD so any supported Unix function/executable can be called
via the Tcl ‘exec’ command. The program executed by ‘exec’ is actually a program called ‘f10do’; this is
a special program that takes an FTOS command as an argument and takes care of all the underlying
details for us.

Once we get past all the function definitions, the program starts calling all the functions one by one in
sequence until the end of the script. The full configuration gets applied under the section commented
‘#######Applying Config###########’. Note, if the prerequisite check fails, this section is never
reached and the full configuration is not applied. The engineer can then check the log file sent to the
FTP server to see what went wrong or if the script encountered an error.

The below screen capture displays the outputs/actions produced by the script if the prerequisite
checks fail. We intentionally disconnected port ‘TenGigabitEthernet 0/13’ so the prerequisite check
fails. As expected, the check fails, and the information is displayed on the terminal and written to a log
file; the log file is then uploaded to a FTP server.

Bare Metal Provisioning 3.0

12

Figure 6: Script communicates prerequisite check failed and sends the log file to an FTP server

Below is an example of the script communicating that the prerequisite checks have passed and that
the configuration is now being applied. As you can see the configuration is only applied if the
prerequisite checks pass.

Figure 7: Prerequiste check passes and script starts to configure switch

Below is the content of the entire script file used in this use case.

Bare Metal Provisioning 3.0

13

#!/usr/bin/expect

#/DELL-FORCE10

#Dell Networking
#BMP 3.0 - Automating the Network Whitepaper Script
#Use Case 2 Script - S4810-1-conf.exp
#Ver. 1.0
#02-08-2013

############FUNCTIONS############

#access the switch CLI via Dell 'f10do' shell command and execute FTOS command
proc execFtosCommand {cmd_str} {
 set str [exec f10do "$cmd_str"]
 print_output $str
}

########Logging Functions########

#print to terminal and to log file
proc print_output {str {fd ""}} {
 puts $str
 if {$fd != ""} {
 puts $fd $str
 }
}

#starts logging status
proc startLogging {} {
 global status_file
 global fp

 set status_file "S4810-1-status.log"

 #open status file
 set fp [open $status_file w]

}

#stop logging status
proc stopLogging {} {
 global fp

 print_output "==\n" $fp
 close $fp
}

#FTP status log file to server
proc ftpLog {} {

Code Snippet 3: ‘S4810-1-conf.exp’ Expect script

Bare Metal Provisioning 3.0

14

 global status_file

 #ip address of FTP server and login credentials
 set FTP_IP "10.11.129.100"
 set FTP_USERNAME "labadmin"
 set FTP_PASSWORD "password"

 set FTP_LOGIN "ftp> "
 set TIMEOUT 10
 exp_log_user 0

 print_output "Uploading Status File, ($status_file), to $FTP_IP ...\n"

 if {[catch {exp_spawn ftp $FTP_IP} ret]} {
 set err true
 print_output "Failed to spawn ftp to $FTP_IP:\n\t$ret"
 } else {
 set err false
 }

 if {!$err} {
 #Expect loop
 expect {
 timeout {
 print_output "Timed out waiting for login on $FTP_IP"
 }
 eof {
 print_output "FTP connection closed by $FTP_IP"
 }
 "Login failed" {
 print_output "FTP connection failed on $FTP_IP"
 }
 -re "ser (.*) denied" {
 print_output "FTP connection refused by $FTP_IP"
 }
 "Connection timed out" {
 print_output "FTP connection timed out on $FTP_IP"
 }
 "Unknown host " {
 print_output "Invalid host $FTP_IP"
 }
 -re "\n(User (.*): |Name (.*):)" {
 exp_send "$FTP_USERNAME\r"
 exp_continue
 }
 -re "\nPassword: *" {
 exp_send "$FTP_PASSWORD\r"
 exp_continue
 }
 -re "\n230 (.*) logged in" {
 exp_continue
 }
 -re $FTP_LOGIN {
 }
 }

Code Snippet 3: ‘S4810-1-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

15

 #do something with FTP
 exp_send "cd logs\r"
 exp_send "put $status_file\r"
 expect {
 timeout {
 print_output "Time out waiting for response on $FTP_IP"
 }
 eof {
 print_output "FTP connection closed by $FTP_IP"
 }
 -re $FTP_LOGIN {
 print_output "Log file uploaded: /logs/$status_file "
 }
 }

 #end clean
 exp_send "quit\r"
 after 5000
 catch {exp_close}
 }
}

#####Prereq Check Functions######

#resets watchdog timer
proc resetTimer {} {
 print_output [exec rstimer 30]
 print_output "\nReset Timer Complete!\n"
}

#configures LLDP protocol
proc configLLDP {} {
 global fp

 print_output "Configuring LLDP Protocol!\n" $fp
 execFtosCommand "configure terminal"
 execFtosCommand "protocol lldp"
 execFtosCommand "no disable"
 execFtosCommand "advertise management-tlv system-name"
 execFtosCommand "end"
}

#confirms LLDP protocol is configured
proc confirmLLDP {} {
 global fp

 set lldp_output [exec f10do "show runn | grep lldp"]

 if {[regexp "protocol lldp" $lldp_output]} {
 print_output "LLDP successfully configured!\n" $fp
 } else {
 print_output "ERROR: LLDP configuration failed!\n" $fp

Code Snippet 3: ‘S4810-1-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

16

 #throw error
 error "LLDP configuration failed!!"
 }
}

#check LLDP neighbors
proc checkLLDP {passedList} {
 global fp

 upvar 1 [lindex $passedList 0] tempArray
 upvar 1 [lindex $passedList 1] tempArray2

 print_output "==\n" $fp
 print_output " Checking Conectivity via LLDP\n" $fp
 print_output "==\n" $fp

 #check via LLDP if ports are active and connected to right switch
 foreach port [array names tempArray] {
 set attempts 0
 set portPass 0
 set switchPass 0

 while {$portPass == 0 && $attempts < 3} {
 set splitArray [split $port]
 set portAbr [string range [lindex $splitArray 0] 0 1]
 set portAbr2 [lindex $splitArray 1]
 set finalAbrPort "${portAbr} ${portAbr2}"
 set result_str [exec f10do "show lldp neighbors | grep \"$finalAbrPort \" ignore-case"]

 print_output $result_str
 if {[regexp "$port" $result_str]} {
 set portPass 1
 if {[regexp "$tempArray2($port)" $result_str]} {
 print_output "Interface $port is Connected to $tempArray2($port)\n" $fp

 print_output "Checking if connected to the right switch!\n" $fp

 if {[regexp "$tempArray($port)" $result_str]} {
 set switchPass 1
 print_output "Interface $port is Connected to correct switch, $tempArray($port)\n" $fp
 } else {
 print_output "ERROR: Interface $port is NOT Connected to correct switch,
$tempArray($port)\n" $fp
 }
 } else {
 print_output "ERROR: Interface $port is Not Connected to Interface $tempArray2($port)\n" $fp
 print_output "LLDP Output for $port:\n $result_str \n" $fp
 }
 continue
 }
 #wait for 20 seconds
 print_output "Interface is Not Connected\n"
 print_output "Wait for 20 seconds for the neighbor to come-up\n"
 after 20000

Code Snippet 3: ‘S4810-1-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

17

 incr attempts
 }

 if {$portPass == 1} {
 print_output "Interface $port is Connected\n" $fp
 } else {
 print_output "ERROR: Interface $port is NOT Connected\n" $fp

 #throw error
 error "LLDP Neighbor check failed!"
 }

 if {$switchPass != 1} {
 print_output "ERROR: Interface $port is NOT Connected to correct switch, $tempArray($port)\n" $fp

 #throw error
 error "LLDP Neighbor check failed!"
 }
 }
}

#configure interfaces used for prerequiste check
proc configInterfaces {passedArray} {
 global fp
 upvar 1 $passedArray tempArray

 foreach interface_value [array names tempArray] {
 print_output "Configuring $interface_value ...\n" $fp
 execFtosCommand "configure terminal"
 execFtosCommand "interface $interface_value"
 execFtosCommand "no ip address"
 execFtosCommand "no shutdown"
 execFtosCommand "end"
 }

 print_output "Wait for 10 seconds for the neighbors to come-up\n"
 after 10000
}

########Config Functions#########

#write changes to startup-config
proc doWrite {} {
 execFtosCommand "write"

 #wait 2 seconds
 after 2000
}

#set the hostname of the switch
proc setHostname {hostname} {
 execFtosCommand "configure terminal"

Code Snippet 3: ‘S4810-1-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

18

 execFtosCommand "hostname $hostname"
 execFtosCommand "end"
}

#sets IP addresses on respective interfaces
proc setIPs {passedArray} {
 global fp
 upvar 1 $passedArray tempArray

 foreach interface_value [array names tempArray] {
 print_output "Configuring $interface_value ...\n" $fp
 execFtosCommand "configure terminal"
 execFtosCommand "interface $interface_value"

 switch $interface_value {
 "TenGigabitEthernet 0/1" {
 set ip "10.1.0.1/30"
 }
 "TenGigabitEthernet 0/13" {
 set ip "10.0.0.1/30"
 }
 "fortyGigE 0/60" {
 set ip "103.0.0.2/30"
 }
 }

 execFtosCommand "ip address $ip"
 execFtosCommand "end"

 }
 print_output "Wait for 8 seconds for the Neighbors to come-up\n"
 after 8000
}

#configures loopback interface - only one loopback interface used for BGP
proc setLoopbacks {} {
 global fp

 print_output "Configuring Loopback 1 ...\n" $fp
 execFtosCommand "configure terminal"
 execFtosCommand "interface loopback 1"
 execFtosCommand "ip address 102.0.0.1/24"
 execFtosCommand "end"
}

#configures management interface with IP address
proc setManagement {} {
 global fp

 print_output "Configuring ManagementEthernet 0/0 ...\n" $fp
 execFtosCommand "configure terminal"
 execFtosCommand "interface managementEthernet 0/0"

Code Snippet 3: ‘S4810-1-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

19

 execFtosCommand "ip address 10.11.129.215/24"
 execFtosCommand "no shut"
 execFtosCommand "end"
}

#configures OSPF
proc configOSPF {} {
 global fp

 print_output "Configuring OSPF ...\n" $fp
 execFtosCommand "configure terminal"
 execFtosCommand "router ospf 5"
 execFtosCommand "router-id 255.0.0.0"
 execFtosCommand "y"
 execFtosCommand "network 10.0.0.0/30 area 0"
 execFtosCommand "network 10.1.0.0/30 area 0"
 execFtosCommand "end"
}

#configures BGP
proc configBGP {} {
 global fp

 print_output "Configuring BGP ...\n" $fp
 execFtosCommand "configure terminal"
 execFtosCommand "router bgp 5"
 execFtosCommand "network 102.0.0.0/16"
 execFtosCommand "neighbor 104.0.0.1 remote-as 10"
 execFtosCommand "neighbor 104.0.0.1 ebgp-multihop 255"
 execFtosCommand "neighbor 104.0.0.1 update-source Loopback 1"
 execFtosCommand "neighbor 104.0.0.1 no shutdown"
 execFtosCommand "end"
}

#configures routes - only one route configured for BGP
proc configRoutes {} {
 global fp

 print_output "Configuring routes ...\n" $fp
 execFtosCommand "configure terminal"
 execFtosCommand "ip route 104.0.0.0/16 103.0.0.1"
 execFtosCommand "end"
}

#################################

#translate CR and LF correctly
fconfigure stdout -translation crlf
fconfigure stderr -translation crlf

#flag variables to confirm if initial check and configuration pass/succeed

Code Snippet 3: ‘S4810-1-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

20

set checkFail 0
set configFail 0

#name to set the switch to
set hostname "S4810-1"

#values for respective interfaces used by script
set int1 "TenGigabitEthernet 0/1"
set int2 "TenGigabitEthernet 0/13"
set int3 "fortyGigE 0/60"

set interfaces($int1) "S4810-3"
set interfaces($int2) "S4810-2"
set interfaces($int3) "Z9000-1"

set remote_interfaces($int1) "TenGigabitEthernet 0/1"
set remote_interfaces($int2) "TenGigabitEthernet 0/13"
set remote_interfaces($int3) "fortyGigE 0/60"

print_output "!!!Executing Config Script!!!\n"

#set Unix watchdog timer to 30 minutes
if [catch resetTimer] {
 print_output "Error encountered during watchdog timer reset!\n"
 set checkFail 1
 exit 2
}

#start logging
if [catch startLogging] {
 print_output "Error encountered during start of logging!\n"
} else {
 print_output "Status logging successfully started!\n" $fp
}

print_output "==\n" $fp
print_output " Status: $hostname\n" $fp
print_output "==\n" $fp

#configure LLDP protocol
if [catch configLLDP] {
 print_output "Error encountered during LLDP configuration!\n"
 set checkFail 1
}

#confirm LLDP protocol is configured
if [catch confirmLLDP] {
 print_output "Error - LLDP not configured!\n"
 set checkFail 1
}

Code Snippet 3: ‘S4810-1-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

21

#configure interfaces
if [catch {configInterfaces interfaces}] {
 print_output "Error upon inital interface configuration!\n"
 set checkFail 1
}

#check LLDP neighbors
if [catch {checkLLDP {interfaces remote_interfaces}}] {
 print_output "Error - LLDP Neighbor check failed!\n"
 set checkFail 1
}

#IF PREREQUISITE CHECK FAILS, EXIT SCRIPT, OTHERWISE CONTINUE TO APPLY CONFIGURATION
if {$checkFail} {
 print_output "!!!!!Prerequisite check complete: requirements fail; configuration will not be applied!!!!!\n" $fp

 #stop logging to status file
 if [catch stopLogging] {
 print_output "Error upon stopping logging!\n" $fp
 }

 #FTP status log file to server
 if [catch ftpLog] {
 print_output "\nError upon FTP of log file to server!\n"
 }

 exit 2
} else {
 print_output "!!!!!Prerequisite check complete: requirements pass; configuration will now be applied!!!!!\n"
$fp
}

#######Applying Config###########

#set the hostname of the switch
if [catch {setHostname $hostname}] {
 print_output "Error setting hostname!\n" $fp
 set configFail 1
}

#configure all physical interfaces that will be used with IP addresses
if [catch {setIPs interfaces}] {
 print_output "Error setting IPs on interfaces!\n" $fp
 set configFail 1
}

#configure loopback interfaces - only one loopback interface configured for BGP use
if [catch setLoopbacks] {
 print_output "Error configuring loopback addresses!\n" $fp
 set configFail 1

Code Snippet 3: ‘S4810-1-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

22

}

#configure OSPF
if [catch configOSPF] {
 print_output "Error configuring OSPF!\n" $fp
 set configFail 1
}

#configure BGP
if [catch configBGP] {
 print_output "Error configuring BGP!\n" $fp
 set configFail 1
}

#configure routes - only one route configured for BGP
if [catch configRoutes] {
 print_output "Error configuring routes!\n" $fp
 set configFail 1
}

#set the management IP address
if [catch setManagement] {
 print_output "Error configuring management!\n" $fp
 set configFail 1
}

#write the configuration to startup-config
if [catch doWrite] {
 print_output "Error saving configuration!\n" $fp
 set configFail 1
}

#NOTIFY IF CONFIGURATION FAILED OR PASSED
if {$configFail} {
 print_output "\n!!!!!Errors were encountered during configuration - check log file!!!!!\n" $fp
} else {
 print_output "\n!!!!!Configuration Successfully Applied!!!!!\n" $fp
}

#stop logging to status file
if [catch stopLogging] {
 print_output "Error upon stopping logging!\n" $fp
 exit 2
}

#FTP status log file to server
if [catch ftpLog] {

Code Snippet 3: ‘S4810-1-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

23

Use Case 3: Check for the latest FTOS image and download and run script file for automated

 pre-requisite checks and, if pre-requisites are met, download and apply the full
 configuration file. Lastly, download and run a post-configuration script file to
 confirm successful configuration and status.

In this use case we have three files involved:

1. S4810-1-pre-conf.exp – prerequisite checks are performed

2. S4810-1.conf – configuration file that is downloaded and applied upon passing prerequisite
 checks

3. S4810-1-post-conf.exp – post-configuration checks are performed to make sure
 configuration is applied successfully and network status is ok

To support this new use case, we update the ‘dhcpd.conf’ file and replace the value for the ‘option
configfile’ field to point to the new pre-configuration file, ‘S4810-1-pre-conf.exp’, shown further
below in its entirety.

Example:
option configfile "ftp://labadmin:password@10.11.129.100/scripts/S4810-1-pre-conf.exp";

Below, we step through the details of each of the three files.

1. S4810-1-pre-conf.exp (See Code Snippet 4 further below)

In the pre-configuration script file, the respective interfaces are enabled with minimal layer 2
configuration, LLDP is configured, and the script confirms the correct connections are made by
checking for LLDP neighbors. Success/failure results are captured in a log file and sent to a FTP server.

Notice in the script shown in its entirety further below in Code Snippet 4, the function, checkLLDP,
checks not only the interface on the neighbor switch it is connected to but also the host name of the
switch it is connected to. This ensures the switch is connected to not only the right port but also the
right switch.

If the prerequisite checks fail, the configuration file is never downloaded and applied. The status log
file is uploaded to the FTP server upon failure or success.

 print_output "\nError upon FTP of log file to server!\n"
 exit 2
}

#IF CONFIGURATION FAILED, EXIT ON ERROR, OR, IF PASSED, EXIT ON SUCCESS
if {$configFail} {
 exit 2
} else {
 exit 0
}

Code Snippet 3: ‘S4810-1-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

24

2. S4810-1.conf (See Code Snippet 5 further below)

Once the pre-configuration script finishes and the prerequisite checks pass, the full configuration file
is downloaded. In Code Snippet 5 further below, only the relevant/applied configuration is shown. The
configuration file has a command in it to run the post-configuration script file which was downloaded
in the pre-configuration script:

script post-config /f10/flash/S4810-1-post-conf.exp

Once the configuration file is applied, the post-configuration script runs and confirms the
configuration and status of the network is ok.

3. S4810-1-post-conf.exp (See Code Snippet 6 further below)

In the post-configuration script file, BGP neighbors, OSPF neighbors, and communication through the
downstream VLT link is validated to confirm configuration was successful and no issue exists.
Success/failure results are captured in a log file and sent to a FTP server.

Notice in the script shown in its entirety further below in Code Snippet 6, not only are BGP and OSPF
neighbors checked by the ‘checkBGP’ and ‘checkOSPF’ functions respectively, but it is also verified
that the neighbor is in the correct state. For BGP, it is also confirmed that the correct number of
prefixes are learned.

Lastly, communication through the downstream VLT is checked via the ‘ping’ command in the
‘checkVLT’ function. The status log file is uploaded to the FTP server upon failure or success.

It is important to note that the pre-configuration script runs before the startup-config is loaded. The
‘doWrite’’ function in the pre-configuration script writes the changes made by the script to the
startup-config. In this use case, if the prerequisites checked in the script pass, a complete
configuration file is downloaded and copied to the startup-config. Within this downloaded
configuration file is the configuration line that starts the execution of the post-configuration file once
the startup-config is loaded: ‘script post-config /f10/flash/S4810-1-post-conf.exp’’.

The complete pre-configuration script is displayed below.

#!/usr/bin/expect

#/DELL-FORCE10

#Dell Networking
#BMP 3.0 - Automating the Network Whitepaper Script
#Use Case 3 Script - S4810-1-pre-conf.exp
#Ver. 1.0
#02-08-2013

############FUNCTIONS############

#access the switch CLI via Dell 'f10do' shell command and execute FTOS command
proc execFtosCommand {cmd_str} {
 set str [exec f10do "$cmd_str"]
 print_output $str

Code Snippet 4: ‘S4810-1-pre-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

25

}

########Logging Functions########

#print to terminal and to log file
proc print_output {str {fd ""}} {
 puts $str
 if {$fd != ""} {
 puts $fd $str
 }
}

#starts logging status
proc startLogging {} {
 global status_file
 global fp

 set status_file "S4810-1-pre-status.log"

 #open status file
 set fp [open $status_file w]
}

#stop logging status
proc stopLogging {} {
 global fp

 print_output "==\n" $fp
 close $fp
}

#FTP status log file to server
proc ftpLog {} {
 global status_file

 #ip address of FTP server and login credentials
 set FTP_IP "10.11.129.100"
 set FTP_USERNAME "labadmin"
 set FTP_PASSWORD "password"
 set FTP_LOGIN "ftp> "
 set TIMEOUT 10
 exp_log_user 0

 print_output "Uploading Status File, ($status_file), to $FTP_IP...\n"

 if {[catch {exp_spawn ftp $FTP_IP} ret]} {
 set err true
 print_output "Failed to spawn ftp to $FTP_IP:\n\t$ret"
 } else {
 set err false
 }
 if {!$err} {

Code Snippet 4: ‘S4810-1-pre-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

26

 #Expect loop
 expect {
 timeout {
 print_output "Timed out waiting for login on $FTP_IP"
 }
 eof {
 print_output "FTP connection closed by $FTP_IP"
 }
 "Login failed" {
 print_output "FTP connection failed on $FTP_IP"
 }
 -re "ser (.*) denied" {
 print_output "FTP connection refused by $FTP_IP"
 }
 "Connection timed out" {
 print_output "FTP connection timed out on $FTP_IP"
 }
 "Unknown host " {
 print_output "Invalid host $FTP_IP"
 }
 -re "\n(User (.*): |Name (.*):)" {
 exp_send "$FTP_USERNAME\r"
 exp_continue
 }
 -re "\nPassword: *" {
 exp_send "$FTP_PASSWORD\r"
 exp_continue
 }
 -re "\n230 (.*) logged in" {
 exp_continue
 }
 -re $FTP_LOGIN {
 }
 }

 #do something with FTP
 exp_send "cd logs\r"
 exp_send "put $status_file\r"
 expect {
 timeout {
 print_output "Time out waiting for response on $FTP_IP"
 }
 eof {
 print_output "FTP connection closed by $FTP_IP"
 }
 -re $FTP_LOGIN {
 print_output "Log file uploaded: /logs/$status_file"
 }
 }

 #end clean
 exp_send "quit\r"
 after 5000
 catch {exp_close}

Code Snippet 4: ‘S4810-1-pre-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

27

 }
}

#####Prereq Check Functions######

#resets watchdog timer
proc resetTimer {} {
 print_output [exec rstimer 30]
 print_output "\nReset Timer Complete!\n"
}

#configures LLDP protocol
proc configLLDP {} {
 global fp

 print_output "Configuring LLDP Protocol!\n" $fp
 execFtosCommand "configure terminal"
 execFtosCommand "protocol lldp"
 execFtosCommand "no disable"
 execFtosCommand "advertise management-tlv system-name"
 execFtosCommand "end"
}

#confirms LLDP protocol is configured
proc confirmLLDP {} {
 global fp

 set lldp_output [exec f10do "show runn | grep lldp"]

 if {[regexp "protocol lldp" $lldp_output]} {
 print_output "LLDP successfully configured!\n" $fp
 } else {
 print_output "ERROR: LLDP configuration failed!\n" $fp

 #throw error
 error "LLDP configuration failed!!"
 }
}

#check LLDP neighbors
proc checkLLDP {passedList} {
 global fp

 upvar 1 [lindex $passedList 0] tempArray
 upvar 1 [lindex $passedList 1] tempArray2

 print_output "==\n" $fp
 print_output " Checking Conectivity via LLDP\n" $fp
 print_output "==\n" $fp

 #check via LLDP if ports are active and connected to right switch

Code Snippet 4: ‘S4810-1-pre-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

28

 foreach port [array names tempArray] {
 set attempts 0
 set portPass 0
 set switchPass 0

 while {$portPass == 0 && $attempts < 3} {
 set splitArray [split $port]
 set portAbr [string range [lindex $splitArray 0] 0 1]
 set portAbr2 [lindex $splitArray 1]
 set finalAbrPort "${portAbr} ${portAbr2}"

 set result_str [exec f10do "show lldp neighbors | grep \"$finalAbrPort \" ignore-case"]
 print_output $result_str
 if {[regexp "$port" $result_str]} {
 set portPass 1
 if {[regexp "$tempArray2($port)" $result_str]} {
 print_output "Interface $port is Connected to $tempArray2($port)\n" $fp

 print_output "Checking if connected to the right switch!\n" $fp

 if {[regexp "$tempArray($port)" $result_str]} {
 set switchPass 1
 print_output "Interface $port is Connected to correct switch, $tempArray($port)\n" $fp
 } else {
 print_output "ERROR: Interface $port is NOT Connected to correct switch,
$tempArray($port)\n" $fp
 }
 } else {
 print_output "ERROR: Interface $port is Not Connected to Interface $tempArray2($port)\n" $fp
 print_output "LLDP Output for $port:\n $result_str \n" $fp
 }
 continue
 }
 #wait for 20 seconds
 print_output "Interface is Not Connected\n"
 print_output "Wait for 20 seconds for the neighbor to come-up\n"
 after 20000
 incr attempts
 }

 if {$portPass == 1} {
 print_output "Interface $port is Connected\n" $fp
 } else {
 print_output "ERROR: Interface $port is NOT Connected\n" $fp

 #throw error
 error "LLDP Neighbor check failed!"
 }

 if {$switchPass != 1} {
 print_output "ERROR: Interface $port is NOT Connected to correct switch, $tempArray($port)\n" $fp

 #throw error
 error "LLDP Neighbor check failed!"
 }

Code Snippet 4: ‘S4810-1-pre-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

29

 }
}

#configure interfaces used for prerequiste check
proc configInterfaces {passedArray} {
 global fp
 upvar 1 $passedArray tempArray

 foreach interface_value [array names tempArray] {
 print_output "Configuring $interface_value...\n" $fp
 execFtosCommand "configure terminal"
 execFtosCommand "interface $interface_value"
 execFtosCommand "no ip address"
 execFtosCommand "no shutdown"
 execFtosCommand "end"
 }
 print_output "Wait for 10 seconds for the neighbors to come-up\n"
 after 10000
}

#download and apply config file and post-config script
proc getConfigAndScript {} {
 set confFile "S4810-1.conf"
 set postConfScript "S4810-1-post-conf.exp"

 exec rm -rf "/usr/pkg/home/bmpuser/$confFile"
 exec rm -rf "/usr/pkg/home/bmpuser/$postConfScript"

 print_output "Downloading Startup Config and Post-Config Script...\n"

 catch {
 exec curl "ftp://labadmin:password@10.11.129.100/scripts/$confFile" -o $confFile
 }
 after 5000

 catch {
 exec curl "ftp://labadmin:password@10.11.129.100/scripts/$postConfScript" -o $postConfScript
 }
 after 5000

 exec cp -f "$confFile" "/f10/flash/$confFile"
 after 5000

 exec cp -f "$postConfScript" "/f10/flash/$postConfScript"
 after 5000

 print_output "Download Complete!!!\n"

 if {[file exists $confFile]} {
 print_output "Config File: $confFile downloaded successfully\n"
 } else {
 print_output "ERROR: Config File: $confFile - Not Found\n"
 }

Code Snippet 4: ‘S4810-1-pre-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

30

 if {[file exists $postConfScript]} {
 puts "Post Config Script: $postConfScript downloaded successfully\n"
 } else {
 puts "ERROR: Post Config Script: $postConfScript - Not Found\n"
 }
}

########Config Functions#########

#write changes to startup-config
proc doWrite {} {
 global fp

 execFtosCommand "copy S4810-1.conf startup-config"
 execFtosCommand "yes"
}

#################################

#translate CR and LF correctly
fconfigure stdout -translation crlf
fconfigure stderr -translation crlf

#flag variables to confirm if initial check and configuration pass/succeed
set checkFail 0
set configFail 0

#name to set the switch to
set hostname "S4810-1"

#values for respective interfaces used by script
set int1 "TenGigabitEthernet 0/1"
set int2 "TenGigabitEthernet 0/13"
set int3 "fortyGigE 0/60"

set interfaces($int1) "S4810-3"
set interfaces($int2) "S4810-2"
set interfaces($int3) "Z9000-1"

set remote_interfaces($int1) "TenGigabitEthernet 0/1"
set remote_interfaces($int2) "TenGigabitEthernet 0/13"
set remote_interfaces($int3) "fortyGigE 0/60"

puts "\n!!!!!!!!!!Executing Pre-Config Script and Checking Prerequisites!!!!!!!!!!\n"

#set Unix watchdog timer to 30 minutes
if [catch resetTimer] {
 puts "Error encountered during watchdog timer reset!"
 set checkFail 1
 exit 2
}

#start logging

Code Snippet 4: ‘S4810-1-pre-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

31

if [catch startLogging] {
 print_output "Error encountered during start of logging!\n"
} else {
 print_output "Status logging successfully started!\n" $fp
}

print_output "==\n" $fp
print_output " Status: $hostname\n" $fp
print_output "==\n" $fp

#configure LLDP protocol
if [catch configLLDP] {
 print_output "Error encountered during LLDP configuration!\n"
 set checkFail 1
}

#confirm LLDP protocol is configured
if [catch confirmLLDP] {
 print_output "Error - LLDP not configured!\n"
 set checkFail 1
}

#configure interfaces
if [catch {configInterfaces interfaces}] {
 print_output "Error upon inital interface configuration!\n"
 set checkFail 1
}

#check LLDP neighbors
if [catch {checkLLDP {interfaces remote_interfaces}}] {
 print_output "Error - LLDP Neighbor check failed!\n"
 set checkFail 1
}

#IF PREREQUISITE CHECK FAILS, EXIT SCRIPT, OTHERWISE CONTINUE TO APPLY CONFIGURATION
if {$checkFail} {
 print_output "!!!!!Prerequisite check complete: requirements fail; configuration will not be applied!!!!!\n" $fp

 #stop logging to status file
 if [catch stopLogging] {
 print_output "Error upon stopping logging!\n" $fp
 }

 #FTP status log file to server
 if [catch ftpLog] {
 print_output "\nError upon FTP of log file to server!\n"
 }

 exit 2

Code Snippet 4: ‘S4810-1-pre-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

32

} else {
 print_output "!!!!!Prerequisite check complete: requirements pass; configuration will now be applied!!!!!\n"
$fp
}

#######Applying Config###########

if [catch getConfigAndScript] {
 print_output "Error downloading configuration and script file!" $fp
 set configFail 1
}

#copy the configuration to startup-config
if [catch doWrite] {
 print_output "Error saving downloaded configuration to startup-config!\n" $fp
 set configFail 1
}

#NOTIFY IF CONFIGURATION FAILED OR PASSED
if {$configFail} {
 print_output "\n!!!!!Errors were encountered during configuration - check log file!!!!!\n" $fp
} else {
 print_output "\n!!!!!Configuration Successfully Applied!!!!!\n" $fp
}

#stop logging to status file
if [catch stopLogging] {
 print_output "Error upon stopping logging!\n" $fp
 exit 2
}

#FTP status log file to server
if [catch ftpLog] {
 print_output "\nError upon FTP of log file to server!\n"
 exit 2
}

#IF CONFIGURATION FAILED, EXIT ON ERROR, OR, IF PASSED, EXIT ON SUCCESS
if {$configFail} {
 exit 2
} else {
 exit 0
}

Code Snippet 4: ‘S4810-1-pre-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

33

Once the above pre-configuration script completes and all the prerequisite checks pass, the below
configuration file that was downloaded via the pre-configuration script is applied. Note, in Code
Snippet 5 shown below, only the relevant/applied configuration is shown. If prerequisite checks fail,
the configuration is not applied and the status log file is sent to the FTP server for the network
engineer to review.

The post-configuration script shown further below in Code Snippet 6 is also downloaded via the pre-
configuration script. Once the configuration file is applied, the ‘script post-config /f10/flash/S4810-1-
post-conf.exp’ command in the configuration file executes the post-configuration script. On
completion, the post-configuration script uploads the results of its post-configuration checks to the
FTP server.

hostname S4810-1
!
!………………..
!
interface TenGigabitEthernet 0/1
 ip address 10.1.0.1/30
 flowcontrol rx on tx off
 no shutdown
!
!………………..
!
interface TenGigabitEthernet 0/13
 ip address 10.0.0.1/30
 flowcontrol rx on tx off
 no shutdown
!
!………………..
!
interface fortyGigE 0/60
 ip address 103.0.0.2/30
 flowcontrol rx on tx off
 no shutdown
!
interface ManagementEthernet 0/0
 ip address 10.11.129.215/22
 no shutdown
!
!………………..
!
interface Loopback 1
 ip address 102.0.0.1/24
 no shutdown
!
!………………..
!
script post-config /f10/flash/S4810-1-post-conf.exp
!
router ospf 5
 router-id 255.0.0.0
 network 10.0.0.0/30 area 0

Code Snippet 5: ‘S4810-1-conf’ Configuration.

Bare Metal Provisioning 3.0

34

#!/usr/bin/expect

#Dell Networking
#BMP 3.0 - Automating the Network Whitepaper Script
#Use Case 3 Script - S4810-1-post-conf.exp
#Ver. 1.0
#02-08-2013

############FUNCTIONS############

#access the switch CLI via Dell 'f10do' shell command and execute FTOS command
proc execFtosCommand {cmd_str} {
 set str [exec f10do "$cmd_str"]
 print_output $str
}

########Logging Functions########

#print to terminal and to log file
proc print_output {str {fd ""}} {
 puts $str
 if {$fd != ""} {
 puts $fd $str
 }
}

#starts logging status
proc startLogging {} {
 global status_file
 global fp

 set status_file "S4810-1-post-status.log"
 #open status file
 set fp [open $status_file w]

Code Snippet 6: ‘S4810-1-post-conf.exp’ Expect script cont.

 network 10.1.0.0/30 area 0
!
router bgp 5
 network 102.0.0.0/16
 neighbor 104.0.0.1 remote-as 10
 neighbor 104.0.0.1 ebgp-multihop 255
 neighbor 104.0.0.1 update-source Loopback 1
 neighbor 104.0.0.1 no shutdown
!
ip route 104.0.0.0/16 103.0.0.1
!
protocol lldp
 advertise management-tlv system-name

Code Snippet 5: ‘S4810-1-conf’ Configuration.

Bare Metal Provisioning 3.0

35

}

#stop logging status
proc stopLogging {} {
 global fp
 print_output "==\n" $fp
 close $fp
}

#FTP status log file to server
proc ftpLog {} {
 global status_file

 #ip address of FTP server and login credentials
 set FTP_IP "10.11.129.100"
 set FTP_USERNAME "labadmin"
 set FTP_PASSWORD "password"
 set FTP_LOGIN "ftp> "
 set TIMEOUT 10
 exp_log_user 0

 print_output "Uploading Status File, ($status_file), to $FTP_IP...\n"

 if {[catch {exp_spawn ftp $FTP_IP} ret]} {
 set err true
 print_output "Failed to spawn ftp to $FTP_IP:\n\t$ret"
 } else {
 set err false
 }

 if {!$err} {
 #Expect loop
 expect {
 timeout {
 print_output "Timed out waiting for login on $FTP_IP"
 }
 eof {
 print_output "FTP connection closed by $FTP_IP"
 }
 "Login failed" {
 print_output "FTP connection failed on $FTP_IP"
 }
 -re "ser (.*) denied" {
 print_output "FTP connection refused by $FTP_IP"
 }
 "Connection timed out" {
 print_output "FTP connection timed out on $FTP_IP"
 }
 "Unknown host " {
 print_output "Invalid host $FTP_IP"
 }
 -re "\n(User (.*): |Name (.*):)" {
 exp_send "$FTP_USERNAME\r"

Code Snippet 6: ‘S4810-1-post-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

36

 exp_continue
 }
 -re "\nPassword: *" {
 exp_send "$FTP_PASSWORD\r"
 exp_continue
 }
 -re "\n230 (.*) logged in" {
 exp_continue
 }
 -re $FTP_LOGIN {
 }
 }

 #do something with FTP
 exp_send "cd logs\r"
 exp_send "put $status_file\r"
 expect {
 timeout {
 print_output "Time out waiting for response on $FTP_IP"
 }
 eof {
 print_output "FTP connection closed by $FTP_IP"
 }
 -re $FTP_LOGIN {
 print_output "Log file uploaded: /logs/$status_file"
 }
 }

 #end clean
 exp_send "quit\r"
 after 5000
 catch {exp_close}
 }
}

#####Post-Config Check Functions######

#resets watchdog timer
proc resetTimer {} {
 print_output [exec rstimer 30]
 print_output "\nReset Timer Complete!\n"
}

#check BGP neighbors
proc checkBGP {bgpArray} {
 global fp

 upvar 1 $bgpArray tempArray

 print_output "\n!!!Checking BGP Neighbors!!!\n" $fp

 #check if BGP neighbor(s) are established and if correct # of prefixes learned
 foreach neighbor [array names tempArray] {

Code Snippet 6: ‘S4810-1-post-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

37

 set result_str [exec f10do "show ip bgp neighbors $neighbor"]
 print_output $result_str $fp

 if {[regexp "BGP state ESTABLISHED" $result_str]} {
 print_output "\nBGP neighbor $neighbor has 'established' state!\n" $fp
 print_output "\nBGP Prefixes Accepted: $tempArray($neighbor)\n" $fp

 if {[regexp "Prefixes accepted $tempArray($neighbor)" $result_str]} {
 print_output "BGP neighbor $neighbor has correct number of BGP prefixes accepted!\n" $fp
 } else {
 print_output "\nBGP neighbor $neighbor does NOT have correct number of BGP prefixes
accepted!\n" $fp
 error "BGP neighbor check failed!"
 }
 } else {
 print_output "\nBGP neighbor $neigbor does NOT have 'established' state!" $fp
 error "BGP neighbor check failed!"
 }
 }
}

#check OSPF neighbors
proc checkOSPF {ospfArray} {
 global fp
 upvar 1 $ospfArray tempArray

 print_output "\n!!!Checking OSPF Neighbors!!!\n" $fp

 #check if OSPF neighbor(s) are learned and in 'FULL' state
 foreach neighbor [array names tempArray] {
 set result_str [exec f10do "show ip ospf neighbor | grep \"$neighbor\""]
 print_output $result_str
 if {[regexp "$neighbor" $result_str]} {
 print_output "\nOSPF neighbor $neighbor learned!\n" $fp

 if {[regexp "FULL" $result_str]} {
 print_output "\nOSPF neighbor $neighbor state: FULL\n" $fp
 } else {
 print_output "\nOSPF neighbor $neighbor state: NOT FULL\n" $fp
 error "OSPF neighbor $neighbor is NOT in FULL state!"
 }
 } else {
 print_output "\nOSPF neighbor $neighbor NOT learned!\n" $fp
 error "OSPF neighbor $neighbor NOT learned!!"
 }
 }
}

#check communication through downstream VLT
proc checkVLT {vlt_address} {
 global fp

 upvar 1 $vlt_address vlt_ip

Bare Metal Provisioning 3.0

38

 print_output "\n!!!Checking communication through downstream VLT!!!\n" $fp

 set result_str [exec f10do "ping $vlt_ip"]
 print_output "$result_str\n" $fp

 if {[regexp "Success rate is 100.0 percent" $result_str]} {
 print_output "Communication through downstream VLT: Success\n" $fp
 } else {
 print_output "Communication through downstream VLT: Failed\n" $fp
 error "Communication through downstream VLT failed"
 }
}

#################################

#translate CR and LF correctly
fconfigure stdout -translation crlf
fconfigure stderr -translation crlf

#flag variables to confirm if initial check and configuration pass/succeed
set checkFail 0

#name to set the switch to
set hostname "S4810-1"

#values for respective neighbors
set bgp_neighbors(104.0.0.1) "11"
set ospf_neighbors(2.0.0.0) "10.0.0.2"
set ospf_neighbors(3.0.0.0) "10.1.0.2"
set vltIP "10.3.0.3"

print_output "\n!!!!!!!!!!Executing Post-Config Script!!!!!!!!!!\n"

#set Unix watchdog timer to 30 minutes
if [catch resetTimer] {
 print_output "Error encountered during watchdog timer reset!"
 set checkFail 1
 exit 2
}

#start logging
if [catch startLogging] {
 print_output "Error encountered during start of logging!\n"
} else {
 print_output "Status logging successfully started!\n" $fp
}

print_output "\n==\n" $fp
print_output " Status: $hostname\n" $fp
print_output "==\n" $fp

Code Snippet 6: ‘S4810-1-post-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

39

#wait 30 seconds for convergence
print_output "Waiting 30 seconds for convergence" $fp
after 30000

#check BGP
if [catch {checkBGP bgp_neighbors}] {
 print_output "BGP neighbor check failed!\n" $fp
 set checkFail 1
} else {
 print_output "BGP neighbor check passed!\n" $fp
}

after 5000

#check OSPF
if [catch {checkOSPF ospf_neighbors}] {
 print_output "OSPF neighbor check failed!\n" $fp
 set checkFail 1
} else {
 print_output "OSPF neighbor check passed!\n" $fp
}

after 5000

#check communication through downstream VLT
if [catch {checkVLT vltIP}] {
 print_output "VLT communication check failed!\n" $fp
 set checkFail 1
} else {
 print_output "VLT communication check passed!\n" $fp
}

###Confirm if Post-Config Passed###

#NOTIFY IF POST-CONFIG CHECK FAILED OR PASSED
if {$checkFail} {
 print_output "\n!!!!!Post-Configuration Check Failed!!!!!\n" $fp
} else {
 print_output "\n!!!!!Post-Configuration Check Passed!!!!!\n" $fp
}

#stop logging to status file
if [catch stopLogging] {
 print_output "Error upon stopping logging!\n" $fp
 exit 2
}

#FTP status log file to server
if [catch ftpLog] {
 print_output "\nError upon FTP of log file to server!\n"
 exit 2

Code Snippet 6: ‘S4810-1-post-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

40

.

Figure 8 below displays a partial snapshot of the post-configuration log file uploaded to the FTP server
during post-configuration script execution.

Figure 8: Partial snapshot of post-configuration log file

}

#IF POST-CONFIG CHECK FAILED, EXIT ON ERROR, OR, IF PASSED, EXIT ON SUCCESS
if {$checkFail} {
 exit 2
} else {
 exit 0
}

Code Snippet 6: ‘S4810-1-post-conf.exp’ Expect script cont.

Bare Metal Provisioning 3.0

41

Conclusion
In this whitepaper, we demonstrated some powerful uses of BMP 3.0. The new feature to allow scripts
to automate testing and configuration on switch boot-up allows for maximizing productivity and
reliability by drastically minimizing user intervention/errors. Although we’ve demonstrated some
popular use cases in this whitepaper such as configuring multiple protocols, testing for connectivity,
and using FTP to send result data, the variation in the types of scripts that can be written and their
respective behavior are numerous and left to the needs/requirements of the customer. As shown in
the three use cases in this whitepaper, BMP 3.0 provides the flexibility to meet different requirements
from downloading a simple configuration file to automating testing and conditional configuration
based on the network status.

Bare Metal Provisioning 3.0

42

Appendix A: Installing a DHCP server
For a DHCP server, we used ‘dhcpd’, the Internet Systems Consortium DHCP Server which is available
as open source software with an ISC License, a BSD style license. We used CentOS 6.3 for the
operating system. Simply install the DHCP server via the ‘yum install dhcp’ command as shown below.

Figure 9: Installing 'dhcpd' on CentOS

Once the ‘dhcpd’ program is installed, we only need to edit the ‘dhcpd.conf’ file. The full path of the
file location is ‘/etc/dhcp/dhcpd.conf’. To edit this file, you will need to be the ‘root’user. To change to
the ‘root’ user simply enter the ‘su’ command and enter the password you set for ‘root’ upon install.
See the prior use case examples in this whitepaper to see how we edited the ‘dhcpd.conf’ file. Always
make sure to create a backup copy of the ‘dhcpd.conf’ file before making changes.

Once the ‘dhcpd.conf’ file is updated, it will not take effect until the DHCP service is restarted. To
accomplish this without having to reboot the system, use the below commands to stop, start, or
restart the service. The DHCP service should be restarted every time after a change is made to the
‘dhcp.d’ file. You can accomplish this by either method below.

1.) service dhcpd restart

or

2.) service dhcpd stop
service dhcpd start

http://www.isc.org/software/license

Bare Metal Provisioning 3.0

43

Appendix B: Installing a FTP server
For a FTP server, we used ‘vsftpd’, a GPL licensed FTP server for Unix/Linux systems. We used CentOS
6.3 for the operating system. Setting up a FTP server is fairly easy using the 'yum install vsftpd'
command as 'root' via the command line interface. See the below snapshot. We switch the user to
root using the 'su' command and then install 'vsftpd' using the 'yum install vsftpd' command.

Figure 10: Installing 'vsftpd' on CentOS

Once the 'vsftpd' program is installed, we need to make a few changes.

As root, we edit the '/etc/vsftpd/vsftpd.conf' file to 'chroot' or 'jail' users to their home directories. This
enforces security and privacy as well as enables us to simply upload files to our home directory,
'/home/admin' to be used by BMP. Always make sure to create a backup copy of the ‘vsftpd.conf’ file
before making changes. You will see something like the below in the file.

Figure 11: Editing the 'vsftpd.conf' file

Make sure to edit the file so all lines starting with ‘chroot’ are uncommented; this can be done by
removing the ‘#’ symbol from the start of the respective line. Once the file is saved, set 'SELinux' to
enforcing mode via the below command at the command prompt:

- setsebool -P ftp_home_dir=1

Now we can simply restart the FTP server via the ‘service dhcpd restart’ command. The ‘vsftpd’ service
should be restarted every time after a change is made to the ‘vsftpd’ file. The below commands can be
used for this purpose. You can accomplish this by either method below.

1.) service vsftpd restart

or

2.) service vsftpd stop
service vsftpd start

