Dell XC Web-Scale Converged Appliance for Wyse vWorkspace®

Dell Engineering
September 2015

A Dell Appliance Architecture
Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2015</td>
<td>Initial release</td>
</tr>
<tr>
<td>September 2015</td>
<td>Document overhaul</td>
</tr>
</tbody>
</table>

THIS DOCUMENT IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, HARDWARE SELECTIONS CONTAINED WITHIN ARE FROM THE BASIS OF BEST WITHOUT EXPRESS OR IMPLIED WARRANTIES OF ANY KIND.

Copyright © 2015 Dell Inc. All rights reserved. Reproduction of this material in any manner whatsoever without the express written permission of Dell Inc. is strictly forbidden. For more information, contact Dell.

Dell, the Dell logo, and the Dell badge are trademarks of Dell Inc. Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and/or other countries. VMware is a registered trademark of VMware, Inc. NVIDIA GRID™ and vGPU™ are registered trademarks of NVIDIA Corporation. Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products. Dell Inc. disclaims any proprietary interest in trademarks and trade names other than its own.

A Dell Appliance Architecture
A Dell Appliance Architecture
4.1.2 Hyper-V Catalyst ... 26
4.1.3 RDSH Integration into Dell Wyse Datacenter Architecture ... 27
4.2 Hypervisor Platforms .. 29
4.2.1 VMware vSphere 6 .. 29
4.2.2 Microsoft Windows Server 2012 R2 Hyper-V ... 30
5 Solution Architecture for Wyse vWorkspace ... 31
 5.1 Management Role Configuration .. 31
 5.1.1 vSphere Management Role Requirements .. 31
 5.1.2 Hyper-V Management Role Requirements .. 32
 5.1.3 RDSH .. 32
 5.1.4 SQL Databases .. 33
 5.1.5 DNS ... 33
 5.2 Storage Architecture Overview .. 34
 5.2.1 Nutanix Containers ... 34
 5.3 Virtual Networking ... 35
 5.3.1 vSphere .. 35
 5.3.2 Hyper-V ... 36
 5.4 Scaling Guidance .. 38
 5.5 Solution High Availability .. 40
 5.6 Dell Wyse Datacenter for VWorkspace Communication Flow 41
6 Solution Performance and Testing ... 42
 6.1 Load Generation and Monitoring .. 42
 6.1.1 Login VSI 4 – Login Consultants .. 42
 6.1.2 VMware vCenter ... 42
 6.1.3 Microsoft Perfmon ... 42
 6.2 Performance Analysis Methodology .. 42
 6.2.1 Resource Utilization ... 43
 6.2.2 Dell Wyse Datacenter Workloads and Profiles .. 44
 6.2.3 Dell Wyse Datacenter Workloads ... 44
 6.3 Testing and Validation .. 46
 6.3.1 Testing Process ... 46
 6.4 vWorkspace Test Results ... 47
<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Authors</td>
<td>61</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Purpose
This document addresses the architecture design, configuration and implementation considerations for the key components required to deliver virtual desktops or shared sessions via Wyse vWorkspace® on Microsoft® Windows Server® Hyper-V® 2012 R2 or VMware® vSphere® 6.

1.2 Scope
Relative to delivering the virtual desktop environment, the objectives of this document are to:

- Define the detailed technical design for the solution.
- Define the hardware requirements to support the design.
- Define the constraints which are relevant to the design.
- Define relevant risks, issues, assumptions and concessions – referencing existing ones where possible.
- Provide a breakdown of the design into key elements such that the reader receives an incremental or modular explanation of the design.
- Provide solution scaling and component selection guidance.

1.3 What’s New
- Introduce support for VMware vSphere 6
- Introduce support for Wyse vWorkspace 8.6
2 Solution Architecture Overview

2.1 Introduction
The Dell XC series delivers an out-of-the-box infrastructure solution for virtual desktops that eliminates the high cost, variable performance, and extensive risk of conventional solutions. The Nutanix™ web-scale converged infrastructure is a turnkey solution that comes ready to run your VDI solution of choice. The Nutanix platform’s unique architecture allows enterprises to scale their virtual desktops from 50 to tens of thousands of desktops in a linear fashion, providing customers with a simple path to enterprise deployment with the agility of public cloud providers.

2.2 Nutanix Architecture
The Nutanix web-scale converged infrastructure is a scale-out cluster of high-performance nodes (or servers), each running a standard hypervisor and containing processors, memory, and local storage (consisting of SSD Flash and high capacity SATA disk drives). Each node runs virtual machines just like a standard virtual machine host.

In addition, local storage from all nodes is virtualized into a unified pool by the Nutanix Distributed File System (NDFS). In effect, NDFS acts like an advanced NAS that uses local SSDs and disks from all nodes to

A Dell Appliance Architecture
store virtual machine data. Virtual machines running on the cluster write data to NDFS as if they were writing to shared storage.

NDFS understand the concept of a virtual machine and provides advanced data management features. It brings data closer to virtual machines by storing the data locally on the system, resulting in higher performance at a lower cost. Nutanix platforms can horizontally scale from as few as three nodes to a large number of nodes, enabling organizations to scale their infrastructure as their needs grow.

The Nutanix Elastic Deduplication Engine is a software-driven, massively scalable and intelligent data reduction technology. It increases the effective capacity in the disk tier, as well as the RAM and flash cache tiers of the system, by eliminating duplicate data. This substantially increases storage efficiency, while also improving performance due to larger effective cache capacity in RAM and flash. Deduplication is performed by each node individually in the cluster, allowing for efficient and uniform deduplication at scale. This technology is increasingly effective with full/persistent clones or P2V migrations.

Nutanix Shadow Clones delivers distributed localized caching of virtual disks performance in multi-reader scenarios, such as desktop virtualization using Wyse vWorkspace or RDSH. With Shadow Clones, the CVM...
actively monitors virtual disk access trends. If there are requests originating from more than two remote CVMs, as well as the local CVM, and all of the requests are read I/O and the virtual disk will be marked as immutable. Once the disk has been marked immutable, the virtual disk is then cached locally by each CVM, so read operations are now satisfied locally by local storage.

The benefits of the Nutanix Platform are now exposed to scale out vSphere or Hyper-V deployments:

2.3 Nutanix Web-scale Converged Infrastructure

The Nutanix web-scale converged infrastructure provides an ideal combination of both high-performance compute with localized storage to meet any demand. True to this capability, this reference architecture contains zero reconfiguration of or customization to the Nutanix product to optimize for this use case.

The next figure shows a high-level example of the relationship between an XC node, storage pool, container, pod and relative scale out:

A Dell Appliance Architecture
Dell XC Web Scale allows organizations to deliver virtualized or remote desktops and applications through a single platform and support end users with access to all of their desktops and applications in a single place.
2.4 Dell XC Web Scale – Solution Pods

The networking layer consists of the 10Gb Dell Networking S4810 utilized to build a world-class leaf/spine architecture with robust 1Gb switching in the S60 for iDRAC connectivity.

The compute, management and storage layers are converged into a single server XC Series appliance cluster, hosting either VMware vSphere or Microsoft Hyper-V hypervisors. The recommended boundaries of an individual pod are based on number of nodes supported within a given hypervisor cluster, 64 nodes for vSphere or Hyper-V.

Dell recommends that the VDI management infrastructure nodes be separated from the compute resources onto their own appliance cluster with a common storage namespace shared between them based on NFS for vSphere or SMB for Hyper-V. One node for VDI management is required, minimally, and expanded based on size of the pod. The designations ds_rdsh, ds_compute, and ds_mgmt as seen below are logical NDFS containers used to group VMs of a particular type. Using distinct containers allows features and attributes, such as compression and deduplication, to be applied to groups of VMs that share similar characteristics. Compute hosts can be used interchangeably for RDSH or RDSH as required. Distinct clusters should be built for management and compute hosts for HA, respectively, to plan predictable failover, scale and load across the pod. The NFS or SMB namespace can be shared across multiple hypervisor clusters adding disk capacity and performance for each distinct cluster.
2.4.1 Network Architecture

Designed for true linear scaling, Dell XC series leverages a Leaf-Spine network architecture. A Leaf-Spine architecture consists of two network tiers: an L2 Leaf and an L3 Spine based on 40GbE and non-blocking switches. This architecture maintains consistent performance without any throughput reduction due to a static maximum of three hops from any node in the network.

The following figure shows a design of a scale-out Leaf-Spine network architecture that provides 20Gb active throughput from each node to its Leaf and scalable 80Gb active throughput from each Leaf to Spine switch providing scale from 3 XC nodes to thousands without any impact to available bandwidth:

![Diagram of Dell XC Appliance Architecture](image)
A Dell Appliance Architecture
3 Hardware Components

3.1 Network
The following sections contain the core network components for the Dell Wyse Datacenter solutions. General uplink cabling guidance to consider in all cases is that TwinAx is very cost effective for short 10Gb runs and for longer runs use fiber with SFPs.

3.1.1 Dell Networking S60 (1Gb ToR Switch)
The Dell Networking S-Series S60 is a high-performance 1/10Gb access switch optimized for lowering operational costs at the network edge and is recommended for iDRAC connectivity. The S60 answers the key challenges related to network congestion in data center ToR (Top-of-Rack) and service provider aggregation deployments. As the use of bursty applications and services continue to increase, huge spikes in network traffic that can cause network congestion and packet loss, also become more common. The S60 is equipped with the industry’s largest packet buffer (1.25 GB), enabling it to deliver lower application latency and maintain predictable network performance even when faced with significant spikes in network traffic. Providing 48 line-rate Gb ports and up to four optional 10Gb uplinks in just 1-RU, the S60 conserves valuable rack space. Further, the S60 design delivers unmatched configuration flexibility, high reliability, and power and cooling efficiency to reduce costs.

<table>
<thead>
<tr>
<th>Model</th>
<th>Features</th>
<th>Options</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell Networking</td>
<td>44 x BaseT (10/100/1000) + 4 x SFP</td>
<td>Redundant PSUs</td>
<td>1Gb connectivity for iDRAC</td>
</tr>
<tr>
<td>S60</td>
<td>High performance</td>
<td>4 x 1Gb SFP ports the support copper or fiber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Scalability</td>
<td>12Gb or 24Gb stacking (up to 12 switches)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 x modular slots for 10Gb uplinks or stacking modules</td>
<td></td>
</tr>
</tbody>
</table>
Guidance:

- 10Gb uplinks to a core or distribution switch are the preferred design choice using the rear 10Gb uplink modules. If 10Gb to a core or distribution switch is unavailable the front 4 x 1Gb SFP ports are used.
- The front 4 SFP ports can support copper cabling and are upgraded to optical if a longer run is needed.

For more information on the S60 switch and Dell Networking, please visit: [LINK](#)

3.1.1 S60 Stacking

The S60 switches are optionally stacked with 2 or more switches, if greater port count or redundancy is desired. Each switch will need a stacking module plugged into a rear bay and connected with a stacking cable. The best practice for switch stacks greater than 2 is to cable in a ring configuration with the last switch in the stack cabled back to the first. Uplinks need to be configured on all switches in the stack back to the core to provide redundancy and failure protection.

3.1.2 Dell Networking S4810 (10Gb ToR Leaf Switch)

The Dell Networking S-Series S4810 is an ultra-low latency 10/40Gb Top-of-Rack (ToR) switch purpose-built for applications in high-performance data center and computing environments. Leveraging a non-blocking, cut-through switching architecture, the S4810 delivers line-rate L2 and L3 forwarding capacity with ultra-low latency to maximize network performance. The compact S4810 design provides industry-leading density of 48 dual-speed 1/10Gb (SFP+) ports as well as four 40Gb QSFP+ uplinks to conserve valuable rack space and simplify the migration to 40Gb in the data center core (Each 40Gb QSFP+ uplink can support four 10Gb ports with a breakout cable). Priority-based Flow Control (PFC), Data Center Bridge Exchange (DCBX), Enhance Transmission Selection (ETS), coupled with ultra-low latency and line rate throughput, make the S4810 ideally suited for converged leaf/spine environments.

A Dell Appliance Architecture
<table>
<thead>
<tr>
<th>Model</th>
<th>Features</th>
<th>Options</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell Networking S4810</td>
<td>48 x SFP+ (1Gb/10Gb) + 4 x QSFP+ (40Gb) Redundant Power Supplies</td>
<td>Single-mode/ multimode optics, TwinAx, QSFP+ breakout cables</td>
<td>ToR switch for 10Gb converged connectivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stack up to 6 switches or 2 using VLT, using SFP or QSFP ports</td>
<td></td>
</tr>
</tbody>
</table>

Guidance:

- The 40Gb QSFP+ ports are split into 4 x 10Gb ports using breakout cables for stand-alone units, if necessary. This is not supported in stacked configurations.
- 10Gb or 40Gb uplinks to a core or distribution switch is the preferred design choice.
- The front 4 SFP ports can support copper cabling and are upgraded to optical if a longer run is needed.

For more information on the S4810 switch and Dell Networking, please visit: [LINK](#)

3.1.2.1 S4810 Stacking

The S4810 switches are optionally stacked up to 6 switches or configured to use Virtual Link Trunking (VLT) up to 2 switches. Stacking is supported on either SFP or QSFP ports as long as that port is configured for stacking. The best practice for switch stacks greater than 2 is to cable in a ring configuration with the last switch in the stack cabled back to the first. Uplinks need to be configured on all switches in the stack back to the core to provide redundancy and failure protection. It is recommended that the S4810 be configured for use in the leaf layer connective up to another switch in the spine layer.

A Dell Appliance Architecture
3.2 Dell XC Converged Appliance

Consolidate compute and storage into a single chassis with Dell XC Series web-scale converged appliances, powered by Nutanix software. XC Series appliances install quickly, integrate easily into any data center, and can be deployed for multiple virtualized workloads including desktop virtualization, test and development, and private cloud projects. For general purpose virtual desktop and virtual application solutions, Dell recommends the XC630. For more information please visit: [Link](#)

While the XC630 is ultimately a flexible and highly configurable converged appliance, Dell offers three optimized platforms with which to build your desktop virtualization project. The A5 configuration is recommended for entry-level, small scale or POC deployments where maximizing a balance of low cost and performance is crucial. The B5 boats a balanced configuration best suited for small or large production deployments consisting of task or knowledge workers. Finally the B7 configuration is positioned as the ultimate in performance and scalability providing an abundance of CPU power and tiered disk capacity to suit a virtual desktop project of any scale or user workload.

![XC630-A5](image1)

XC630-A5
- Low core CPUs (BC)
- Low density RAM
- Two tiers: Low Capacity SSD + HDD
- Non-persistent VDI + RDSH

XC630 (10 x 2.5")
- CPU: 2 x E5-2690v3 (8C, 2.3GHz)
- Memory: 16 x 16GB 2133MHz RDIMMs
- RAID Ctrl: PERC H730 Mini – no RAID
- Storage: 64GB SATADOM (RDIMM, hypervisor) + 4 x 1TB HBA 2.5" (T1D)
- Network: 2 x 10Gb, 2 x 1Gb SFP+ / BT
- DRAC: iDRAC8; Enter; iFlash, 8GB SD
- Power: 2 x 750W PSUs

![XC630-B5](image2)

XC630-B5
- Mid core CPUs (12C)
- Medium density RAM
- Two tiers: Medium Capacity SSD + Low Capacity HDD
- Non-persistent VDI + RDSH

XC630 (10 x 2.5")
- CPU: 2 x E5-2690v4 (8C, 2.6GHz)
- Memory: 24 x 16GB 2133MHz RDIMMs
- RAID Ctrl: PERC H730 Mini – no RAID
- Storage: 64GB SATADOM (RDIMM, hypervisor) + 4 x 400GB MLC SSD 2.5" (T1D)
- Network: 2 x 10Gb, 2 x 1Gb SFP+ / BT
- DRAC: iDRAC8; Enter; iFlash, 8GB SD
- Power: 2 x 750W PSUs

![XC630-B7](image3)

XC630-B7
- High core CPUs (16C)
- High density RAM
- Two tiers: Medium Capacity SSD + High Capacity HDD
- Persistent or Non-persistent VDI + RDSH

XC630 (10 x 2.5")
- CPU: 2 x E5-2699v3 (16C, 2.3GHz)
- Memory: 24 x 16GB 2133MHz RDIMMs
- RAID Ctrl: PERC H730 Mini – no RAID
- Storage: 64GB SATADOM (RDIMM, hypervisor) + 6 x 1TB HBA 2.5" (T1D)
- Network: 2 x 10Gb, 3 x 1Gb SFP+ / BT
- DRAC: iDRAC8; Enter; iFlash, 8GB SD
- Power: 2 x 750W PSUs

A Dell Appliance Architecture
3.2.1 Dell XC630 (A5)
The Dell XC630-A5 platform is perfect for POCs, lighter user workloads, shared sessions or application virtualization. Each appliance comes equipped with dual 8-core CPUs and 256GB of high-performance RAM. Six disks come in each host, 2 x 200GB SSD for the hot tier (Tier1) and 4 x 1TB NL SAS disks for the cold tier (Tier2). The 64GB SATADOM boots the hypervisor and Nutanix Controller VM while the H730 PERC is configured in pass-through mode connecting to the SSDs and HDDs. 64GB is consumed on each of the first two SSDs for the Nutanix “home”. These six disks are presented to the Nutanix Controller VM running locally on each host. Each platform can be outfitted with SFP+ or BaseT NICs.

<table>
<thead>
<tr>
<th>Dell XC630 – A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
</tr>
<tr>
<td>Memory</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RAID Ctrls</td>
</tr>
<tr>
<td>Storage</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Network</td>
</tr>
<tr>
<td>iDRAC</td>
</tr>
<tr>
<td>Power</td>
</tr>
</tbody>
</table>

3.2.2 Dell XC630 (B5)
The Dell XC630-B5 platform is perfect for larger POCs, medium user workloads, shared sessions or application virtualization. Each appliance comes equipped with dual 12-core CPUs and 384GB of high-performance RAM. Six disks come in each host, 2 x 400GB SSD for the hot tier (Tier1) and 4 x 1TB NL SAS disks for the cold tier (Tier2). The 64GB SATADOM boots the hypervisor and Nutanix Controller VM while the H730 PERC is configured in pass-through mode connecting to the SSDs and HDDs. 64GB is consumed on each of the first two SSDs for the Nutanix “home”. These six disks are presented to the Nutanix Controller VM running locally on each host. Each platform can be outfitted with SFP+ or BaseT NICs.
3.2.3 Dell XC630 (B7)

The Dell XC630-B7 platform is ideal for high performance requirements, heavy user workloads, and dense shared sessions or application virtualization. Each appliance comes equipped with dual 16-core CPUs and 384GB of high-performance RAM. Six disks come in each host, 2 x 400GB SSD for the hot tier (Tier1) and 6 x 1TB NL SAS disks for the cold tier (Tier2). The 64GB SATADOM boots the hypervisor and Nutanix Controller VM while the H730 PERC is configured in pass-through mode connecting to the SSDs and HDDs. 64GB is consumed on each of the first two SSDs for the Nutanix "home". These eight disks are presented to the Nutanix Controller VM running locally on each host. Each platform can be outfitted with SFP+ or BaseT NICs.
Dell XC630 – B7

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>2 x E5-2698v3 (16C, 2.3GHz)</td>
</tr>
</tbody>
</table>
| **Memory** | 24 x 16GB 2133MHz RDIMMs
Effective speed: 1866 MHz @ 384GB |
| **RAIDCtrls** | PERC H730 Mini – no RAID |
| **Storage** | 64GB SATADOM (CVM/Hypervisor)
2 x 400GB MLC SATA SSD 2.5" (T1)
6 x 1TB NL SAS 2.5" (T2) |
| **Network** | 2 x 10Gb, 2 x 1Gb SFP+/ BT |
| **iDRAC** | iDRAC8 Ent w/ vFlash, 8GB SD |
| **Power** | 2 x 750W PSUs |

3.3 Dell Wyse Cloud Clients

3.3.1 Wyse 3020 Thin Client (ThinOS)

The Dell Wyse 3020 thin client runs Wyse ThinOS and handles everyday tasks with ease and also provides multimedia acceleration for task workers who need video. Users will enjoy integrated graphics processing and additional WMV9 & H264 video decoding capabilities from the Marvell ARMADA™ PXA2128 1.2 GHz Dual Core ARM System-on-Chip (SoC) processor. In addition, the Wyse 3020 is one of the only affordable thin clients to support dual monitors with monitor rotation, enabling increased productivity by providing an extensive view of task work.

Designing smooth playback of high bit-rate HD video and graphics in such a small box hasn’t been at the expense of energy consumption and heat emissions either. Using less than 7 watts of electricity, the Wyse 3020 small size enables discrete mounting options: under desks, to walls, and behind monitors, creating cool workspaces in every respect.

A Dell Appliance Architecture
3.3.2 Wyse 5010 Thin Client (ThinOS)

Ultra-high performance in a compact package. Power users and knowledge workers will love the exceptionally fast speed and power from the dual-core driven Dell Wyse 5010 thin client running Wyse ThinOS. With a 1.4 GHz AMD G series APU with integrated graphics engine, the Wyse 5010 handles everything from demanding multimedia applications to business content creation and consumption with ease. The Wyse 5010 even supports power users’ most demanding workloads: high quality audio and video, unified communications, CAD/CAM, 3D simulation and modelling, HD Flash and multimedia, and dual digital high resolution displays with rotation. Users will enjoy smooth roaming and super-fast 802.11 a/b/g/n wireless at 2.4 and 5 GHz with dual antennas. The Wyse 5010 (ThinOS) is Citrix HDX, Microsoft® RemoteFX, and VMware® Horizon View certified. It also supports legacy peripherals via an optional USB adapter. Averaging 9 watts, each and every Wyse 5010 contributes – quietly and coolly – to lowering your organization’s carbon footprint, with reduced power usage and emissions.

3.3.3 Wyse 5010 Thin Client (Windows Embedded Standard 8)

A strong, reliable thin client, the Dell Wyse 5010 thin client runs Windows Embedded Standard 8 and packs dual-core processing power into a compact form factor for knowledge workers who need performance for demanding virtual Windows® desktops and cloud applications. It’s also great for kiosks, and multi-touch displays in a wide variety of environments, including manufacturing, hospitality, retail, and healthcare. It features dual-core processing power and an integrated graphics engine for a fulfilling Windows® 8 user experience. Knowledge workers will enjoy rich content creation and consumption as well as everyday multimedia. Kiosk displays will look great on a thin client that is Microsoft RemoteFX®, Citrix® HDX, VMware PCoIP, and HD video-enabled. Operating with less than 9 watts of energy, the Dell Wyse 5010 (Windows) offers cool, quiet operations, potentially lowering your overall carbon footprint.

3.3.4 Wyse 7010 Thin Client (Windows Embedded Standard 8)

The versatile Dell Wyse 7010 thin client runs Windows Embedded Standard 8 and gives people the freedom to mix and match a broad range of legacy and cutting edge peripheral devices. Ports for parallel, serial, and USB 3.0 offer fast, flexible connectivity. Like all Dell Wyse cloud clients, the new Dell Wyse 7010 (Windows) is one cool operator. Its energy efficient processor – which out-performs other more power-hungry alternatives – and silent fan-less design, all contribute to help lower an organization’s carbon footprint through power requirements that are a fraction of traditional desktop PCs.

A Dell Appliance Architecture
3.3.5 **Wyse 5040 AIO**

The Dell Wyse 5040 AIO all-in-one (AIO) offers versatile connectivity options for use in a wide range of industries. With four USB 2.0 ports, Gigabit Ethernet and integrated dual band Wi-Fi options, users can link to their peripherals and quickly connect to the network while working with processing-intensive, graphics-rich applications. Built-in speakers, a camera and a microphone make video conferencing and desktop communication simple and easy. It even supports a second attached display for those who need a dual monitor configuration. A simple one-cord design and out-of-box automatic setup makes deployment effortless while remote management from a simple file server, Wyse Device Manager (WDM), or Wyse Cloud Client Manager can help lower your total cost of ownership as you grow from just a few thin clients to tens of thousands.

3.3.6 **Dell Wyse Cloud Connect**

Designed to promote bring-your-own-device (BYOD) environments, Dell Wyse Cloud Connect allows you to securely access and share work and personal files, presentations, applications and other content from your business or your home. Managed through Dell Wyse Cloud Client Manager software-as-a-service (SaaS), IT managers can ensure that each Cloud Connect device is used by the appropriate person with the right permissions and access to the appropriate apps and content based on role, department and location. Slightly larger than a USB memory stick, Cloud Connect is an ultra-compact multimedia-capable device. Simply plug it into any available Mobile High-Definition Link (MHL) / HDMI port on a TV or monitor, attach a Bluetooth keyboard and mouse, and you’re off and running. Easy to slip into your pocket or bag, it enables an HD-quality window to the cloud, great for meetings and presentations while on business travel, or for cruising the internet and checking email after a day of work. For more information, please visit: [Link](#)

3.3.7 **Dell Venue 11 Pro**

Meet the ultimate in productivity, connectivity and collaboration. Enjoy full laptop performance in an ultra-portable tablet that has unmatched flexibility for a business in motion. This dual purpose device works as a tablet when you’re out in the field but also enables you to work on your desktop in the office thanks to an optional dock. For more information, please visit: [Link](#)
3.3.8 Dell Chromebook 11

The lightweight, easy-to-use Dell Chromebook 11 helps turn education into exploration - without the worries of safety or security. Priced to make 1:1 computing affordable today, Chromebook 11 is backed by Dell support services to make the most of your budget for years to come. The Chrome OS and Chrome browser get students online in an instant and loads web pages in seconds. A high-density battery supported by a 4th Gen Intel® processor provides up to 10 hours of power. Encourage creativity with the Chromebook 11 and its multimedia features that include an 11.6" screen, stereo sound and webcam.
4 Software Components

4.1 Dell Wyse vWorkspace

Wyse vWorkspace is an enterprise class application and desktop virtualization management solution which enables blended deployment and support of virtual desktops, shared sessions and virtualized applications. The core components of vWorkspace are:

- **Connection Broker** - The vWorkspace Connection Broker helps users connect to their virtual desktops, applications, and other hosted resource sessions. The user's endpoint sends a request to the connection broker to access their virtual environment. The connection broker processes the request by searching for available desktops, and then redirects the user to the available managed desktop or application.

- **Management Database** - The vWorkspace Management Database is required to perform administrative functions. The management database stores all the information relevant to a vWorkspace farm, such as configuration data, administrative tasks and results, and information regarding client connections to virtual desktops and RDSH environments.

- **Management Console** - The vWorkspace Management Console is an integrated graphical interface that helps you perform various management and administrative functions and can be installed on any workstation or server.

- **Data Collector Service** - The vWorkspace Data Collector service is a Windows service on RDSH servers, virtual desktops, and Hyper-V hosts in a vWorkspace farm that sends a heartbeat signal and other information to the connection broker.

- **Monitoring and Diagnostics** - Built on Dell Software’s Foglight platform, vWorkspace Diagnostics and Monitoring provides real-time and historical data for user experience, hypervisor performance, RDSH servers/applications, virtual desktops, Connection Broker servers, Web Access servers, Secure Gateway servers, profile servers, EOP Print servers, and farm databases.

- **User Profile Management** - vWorkspace User Profile Management uses virtual user profiles as an alternative to roaming profiles in a Microsoft Windows environment including virtual desktops and RD Session Hosts. The virtual user profiles eliminate potential profile corruption and accelerate logon and logoff times by combining the use of a mandatory profile with a custom persistence layer designed to preserve user profile settings between sessions.

- **Web Access** - vWorkspace Web Access is a web application that acts as a web-based portal to a vWorkspace farm. It helps users to retrieve the list of available applications and desktops by using their web browser. After successful authentication, their published desktops and applications are displayed in the web browser.

- **Secure Access** - vWorkspace Secure Gateway is an SSL gateway that simplifies the deployment of applications over the Internet and can provide proxy connections to vWorkspace components such as RDP sessions, the Web Access client, and connection brokers.

- **Universal Print Server** - vWorkspace Universal Print is a single-driver printing solution that satisfies both client-side and network printing needs in a vWorkspace environment by providing bandwidth usage control, intelligent font embedding, native printer feature support and clientless support for LAN connected print servers and remote site print servers.
vWorkspace 8.6 includes support for Microsoft Windows Server 2012 R2, Windows 8.1, Windows 10 Lync 2013, and App-V 5.0 as well as provides several enhancements to Diagnostics and Monitoring, Hyper-V Catalyst Components, Dell EOP and more.

For additional information about the enhancements in Dell vWorkspace 8.6, please visit: http://documents.quest.com/book/2057

4.1.1 Wyse vWorkspace Deployment Options

Wyse vWorkspace provides a number of delivery options to meet your needs, all within a single, simple, wizard-driven environment that is easy to set up and manage.

- **RD Session Host Sessions** – Provide easy access to a densely shared session environment. vWorkspace RD Session Hosts can deliver full desktops or seamless application sessions from Windows Server Virtual Machines running Windows Server 2003 R2 (32 or 64 Bit), 2008 (32 or 64 bit), 2008 R2, 2012, and 2012 R2. RD Session Host Sessions are well-suited for task based workers using office productivity and line of business applications, without needs for supporting complex peripheral devices or applications with extreme memory or CPU requirements.

- **Computer Groups Types** – Computer Groups can be for virtual or physical computers running Windows XP Pro to Windows 8 Enterprise or Server 2003 R2 to 2012 R2. Additionally there is limited support for Linux computer groups, but Linux is outside of the scope of this reference architecture.
 - **Desktop Cloud** – provides users with access to a single virtual machine from a pool of available virtual machines on one or more non-clustered Hyper-V Servers with local storage. Desktop Clouds are elastic in nature and automatically expand as additional Hyper-V Compute Hosts are added to vWorkspace. New Compute Hosts automatically receive instant copies of the virtual machine templates, from which they provision new virtual machines locally. Desktop Cloud virtual machines are temporarily assigned to a user or device at logon, and at logoff are re-provisioned from the parent VHDX (instant copy of the virtual machine template). Desktop Cloud virtual machines are well suited for task based workers using office productivity and line of business applications.
 - **Temporary Virtual Desktop** – are the non-persistent user desktop VMs traditionally associated with VDI. Each desktop VM is assigned a dedicated portion of the host server’s resources to guarantee the performance of each desktop. The desktop VM is dedicated to a single user or device while in use then returned to the computer group at logoff, or rebooted and reset to a pristine gold image state for the next user. Applications can be built into gold images or published via RemoteApp. A Microsoft VDA license is required for each non-Microsoft Software Assurance covered device accessing this type of environment.
 - **Persistent Virtual Desktop Groups** – 1-to-1 desktop VMs assigned to a specific entitled user or device. All changes made by Personal VM users will persist through logoffs and reboots making this a truly personalized computing experience. A Microsoft VDA license is required for each non-Microsoft Software Assurance covered device accessing this type of environment.
Physical Computers – Like Virtual Desktop Computer Groups, Physical Computers can be persistently or temporarily assigned to users or devices. Common use cases for connections to physical computers are remote software development and remote access to one's office PC.

Please contact your Dell sales rep for more information on licensing requirements for VDI.

4.1.2 Hyper-V Catalyst

Hyper-V Catalyst Components - vWorkspace Hyper-V Catalyst Components increase the scalability and performance of virtual computers on Hyper-V Hosts. Hyper-V catalyst components consist of two components: HyperCache and HyperDeploy.

HyperCache provides read Input/Output Operations per Second (IOPS) savings and improves virtual desktop performance through selective RAM caching of parent VHDs. This is achieved through the following:

• Reads requests to the parent VHD are directed to the parent VHD cache.
• Requests data that is not in cache is obtained from disk and then copied into the parent VHD cache.
• Provides a faster virtual desktop experience as child VMs requesting the same data find it in the parent VHD cache.
• Requests are processed until the parent VHD cache is full. The default size is 800 MB, but can be changed through the Hyper-V virtualization host property.

For additional information about Dell Wyse vWorkspace and HyperCache, please visit: Link

HyperDeploy manages parent VHD deployment to relevant Hyper-V hosts and enables instant cloning of Hyper-V virtual computers. HyperDeploy uses the following techniques to minimize the time used to deploy a virtual computer.

• Smart copying that only copies to the Hyper-V hosts the parent VHD data that is needed.
• Instant provisioning allows the child VHDs to be cloned while the parent VHD is still being copied to the Hyper-V host.
• Copy status is displayed on the Parent VHDs tab to allow for monitoring of the progress and completion.

HyperDeploy is a core component and requires no configuration.

For additional information about Dell Wyse vWorkspace and HyperDeploy, please visit: Link
4.1.3 RDSH Integration into Dell Wyse Datacenter Architecture

The RDSH servers can exist as physical or virtualized instances of Windows Server 2012 R2. A minimum of one (1), up to a maximum of eight (7) virtual servers are installed per physical compute host. Since RDSH instances are easily added to an existing vWorkspace stack, the only additional components required are:

- One or more Windows Server OS instances added to the vWorkspace site

The total number of required virtual RDSH servers is dependent on application type, quantity and user load. Deploying RDSH virtually and in a multi-server farm configuration increases overall farm performance, application load balancing as well as farm redundancy and resiliency.

4.1.3.1 NUMA Architecture Considerations

Best practices and testing has showed that aligning RDSH design to the physical Non-Uniform Memory Access (NUMA) architecture of the server CPUs results in increased and optimal performance. NUMA alignment ensures that a CPU can access its own directly-connected RAM banks faster than those banks of the adjacent processor which are accessed via the Quick Path Interconnect (QPI). The same is true of VMs with large vCPU assignments, best performance will be achieved if your VMs receive their vCPU allotment from a single physical NUMA node. Ensuring that your virtual RDSH servers do not span physical NUMA nodes will ensure the greatest possible performance benefit.

The general guidance for RDSH NUMA-alignment on the Dell XC appliance is as follows:

4.1.3.2 A5 NUMA Alignment

8 physical cores per CPU in the A5 platform, 16 logical with Hyperthreading active, gives us a total of 32 consumable cores per appliance and falls in line with a 2x oversubscription rate. The Nutanix CVM will receive its vCPU allotment from the first physical CPU and so configuring the RDSH VMs as shown below will ensure that no NUMA spanning occurs which could lower performance.
4.1.3.3 B5 NUMA Alignment
12 physical cores per CPU in the A5 platform, 24 logical with Hyperthreading active, gives us a total of 48 consumable cores per appliance and falls in line with a 2x oversubscription rate. The Nutanix CVM will receive its vCPU allotment from the first physical CPU and so configuring the RDSH VMs as shown below will ensure that no NUMA spanning occurs which could lower performance.

4.1.3.4 B7 NUMA Alignment
16 physical cores per CPU in the A5 platform, 32 logical with Hyperthreading active, gives us a total of 64 consumable cores per appliance and falls in line with a 2x oversubscription rate. The Nutanix CVM will receive its vCPU allotment from the first physical CPU and so configuring the RDSH VMs as shown below will ensure that no NUMA spanning occurs which could lower performance.
4.2 Hypervisor Platforms

4.2.1 VMware vSphere 6

The vSphere hypervisor also known as ESXi is a bare-metal hypervisor that installs directly on top of your physical server and partitions it into multiple virtual machines. Each virtual machine shares the same physical resources as the other virtual machines and they can all run at the same time. Unlike other hypervisors, all management functionality of vSphere is done through remote management tools. There is no underlying operating system, reducing the install footprint to less than 150MB.

VMware vSphere 6 includes three major layers: Virtualization, Management and Interface. The Virtualization layer includes infrastructure and application services. The Management layer is central for configuring, provisioning and managing virtualized environments. The Interface layer includes the vSphere web client.

Throughout the Dell Wyse Datacenter solution, all VMware and Microsoft best practices and prerequisites for core services are adhered to (NTP, DNS, Active Directory, etc.). The vCenter 6 VM used in the solution is a single Windows Server 2012 R2 VM or vCenter 6 virtual appliance, residing on a host in the management Tier. SQL server is a core component of the Windows version of vCenter and is hosted on
another VM also residing in the management Tier. It is recommended that all additional VWorkspace components be installed in a distributed architecture, one role per server VM.

4.2.2 Microsoft Windows Server 2012 R2 Hyper-V

Windows Server 2012 R2 Hyper-V™ is a powerful virtualization technology that enables businesses to leverage the benefits of virtualization. Hyper-V reduces costs, increases hardware utilization, optimizes business infrastructure, and improves server availability. Hyper-V works with virtualization-aware hardware to tightly control the resources available to each virtual machine. The latest generation of Dell servers includes virtualization-aware processors and network adapters.

From a network management standpoint, virtual machines are much easier to manage than physical computers. To this end, Hyper-V includes many management features designed to make managing virtual machines simple and familiar, while enabling easy access to powerful VM-specific management functions. The primary management platform within a Hyper-V based VWorkspace virtualization environment is Microsoft Systems Center Virtual Machine Manager SP1 (SCVMM).

SCVMM provides centralized and powerful management, monitoring, and self-service provisioning for virtual machines. SCVMM host groups are a way to apply policies and to check for problems across several VMs at once. Groups are organized by owner, operating system, or by custom names such as “Development” or “Production”. The interface also incorporates Remote Desktop Protocol (RDP); double-click a VM to bring up the console for that VM—live and accessible from the management console.
5 Solution Architecture for Wyse vWorkspace

5.1 Management Role Configuration

The Management role recommendations for the base solution are summarized below. Use data disks for role-specific application files such as data, logs and IIS web files in the Management volume.

5.1.1 vSphere Management Role Requirements

<table>
<thead>
<tr>
<th>Role</th>
<th>vCPU</th>
<th>vRAM (GB)</th>
<th>NIC</th>
<th>OS vDisk</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutanix CVM</td>
<td>8*</td>
<td>16</td>
<td>2</td>
<td>-</td>
<td>C:\ (SATADOM)</td>
</tr>
<tr>
<td>Broker + Licensing</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>40</td>
<td>SDS: ds_mgmt</td>
</tr>
<tr>
<td>vFoglight</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>60</td>
<td>SDS: ds_mgmt</td>
</tr>
<tr>
<td>Web Access + SGW</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>40</td>
<td>SDS: ds_mgmt</td>
</tr>
<tr>
<td>File Server</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>40</td>
<td>SDS: ds_mgmt</td>
</tr>
<tr>
<td>SQL Server</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>40 + 200</td>
<td>SDS: ds_mgmt</td>
</tr>
<tr>
<td>vCenter</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>40</td>
<td>SDS: ds_mgmt</td>
</tr>
<tr>
<td>Total</td>
<td>23 vCPUs</td>
<td>48GB</td>
<td>8 vNICs</td>
<td>460GB</td>
<td>-</td>
</tr>
</tbody>
</table>

A Dell Appliance Architecture
5.1.2 Hyper-V Management Role Requirements

<table>
<thead>
<tr>
<th>Role</th>
<th>vCPU</th>
<th>Startup RAM (GB)</th>
<th>Dynamic Memory</th>
<th>NIC</th>
<th>OS vDisk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Size (GB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Location</td>
</tr>
<tr>
<td>Nutanix CVM</td>
<td>8*</td>
<td>16</td>
<td>Dynamic Memory Disabled</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Broker + Licensing</td>
<td>4</td>
<td>4</td>
<td>512MB</td>
<td>8GB</td>
<td>20%</td>
</tr>
<tr>
<td>vFoglight</td>
<td>2</td>
<td>4</td>
<td>512MB</td>
<td>6GB</td>
<td>20%</td>
</tr>
<tr>
<td>Web Access + SGW</td>
<td>2</td>
<td>4</td>
<td>512MB</td>
<td>6GB</td>
<td>20%</td>
</tr>
<tr>
<td>File Server</td>
<td>1</td>
<td>4</td>
<td>512MB</td>
<td>6GB</td>
<td>20%</td>
</tr>
<tr>
<td>Primary SQL</td>
<td>4</td>
<td>8</td>
<td>512MB</td>
<td>10GB</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>21 vCPUs</td>
<td>40GB</td>
<td>2.5GB</td>
<td>36GB</td>
<td>-</td>
</tr>
</tbody>
</table>

5.1.3 RDSH

The recommended number of RDSH VMs and their configurations on vSphere or Hyper-V are summarized below based on applicable hardware platform.
5.1.4 SQL Databases

The vWorkspace, Microsoft and VMware databases are hosted by a single dedicated SQL 2012 R2 Server VM in the Management layer. Use caution during database setup to ensure that SQL data, logs, and TempDB are properly separated onto their respective volumes. Create all Databases that are required for:

- Wyse vWorkspace
- vCenter or SCVMM

Initial placement of all databases into a single SQL instance is fine unless performance becomes an issue, in which case database need to be separated into separate named instances. Enable auto-growth for each DB.

Best practices defined by Dell, Microsoft and VMware are to be adhered to, to ensure optimal database performance.

Align all disks to be used by SQL Server with a 1024K offset and then formatted with a 64K file allocation unit size (data, logs, and TempDB).

5.1.5 DNS

DNS plays a crucial role in the environment not only as the basis for Active Directory but is used to control access to the various vWorkspace and Microsoft software components. All hosts, VMs, and consumable software components need to have a presence in DNS, preferably via a dynamic and AD-integrated namespace. Microsoft best practices and organizational requirements are to be adhered to.

Pay consideration for eventual scaling, access to components that may live on one or more servers (SQL databases, vWorkspace services) during the initial deployment. Use CNAMEs and the round robin DNS...
mechanism to provide a front-end “mask” to the back-end server actually hosting the service or data source.

5.1.5.1 DNS for SQL
To access the SQL data sources, either directly or via ODBC, a connection to the server name\instance name must be used. To simplify this process, as well as protect for future scaling (HA), instead of connecting to server names directly, alias these connections in the form of DNS CNAMEs. So instead of connecting to SQLServer1\<instance name> for every device that needs access to SQL, the preferred approach is to connect to <CNAME>\<instance name>.

For example, the CNAME “VDISQL” is created to point to SQLServer1. If a failure scenario was to occur and SQLServer2 would need to start serving data, we would simply change the CNAME in DNS to point to SQLServer2. No infrastructure SQL client connections would need to be touched.

SQLServer1	Host (A)	10.1.1.28
SQLServer2	Host (A)	10.1.1.29
SQLVDI	Alias (CNAME)	SQLServer1.fcs.local

5.2 Storage Architecture Overview
All Dell XC Web Scale appliances come with two tiers of storage by default, SSD for performance and HDD for capacity. A single common Software Defined Storage namespace is created across the Nutanix cluster and presented as either NFS or SMB to the hypervisor of each host. This constitutes a storage pool and one should be sufficient per cluster. Within this common namespace, logical containers are created to group VM files as well as control the specific storage-related features that are desired to be enabled such as deduplication and compression.

5.2.1 Nutanix Containers
The following table outlines the recommended containers, their purpose and settings given the use case. Best practices suggest using as few features as possible, only enable what is absolutely required. For example, if you are not experiencing disk capacity pressure then there is no need to enable Capacity Tier Deduplication. Enabling unnecessary services increases the resource demands of the Controller VMs. Capacity tier deduplication requires that CVMs be configured with 32GB RAM.
<table>
<thead>
<tr>
<th>Container</th>
<th>Purpose</th>
<th>Replication Factor</th>
<th>Perf Tier Deduplication</th>
<th>Capacity Tier Deduplication</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ds_compute</td>
<td>Desktop VMs</td>
<td>2</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Ds_mgmt</td>
<td>Mgmt Infra VMs</td>
<td>2</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Ds_rdsh</td>
<td>RDSH Server VMs</td>
<td>2</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

5.3 Virtual Networking

The network configuration for the Dell XC Web Scale appliances utilizes a 10Gb converged infrastructure model. All required VLANs will traverse 2 x 10Gb NICs configured in an active/active team. For larger scaling it is recommended to separate the infrastructure management VMs from the compute VMs to aid in predictable compute host scaling. The following outlines the VLAN requirements for the Compute and Management hosts in this solution model:

- **Compute hosts**
 - Management VLAN: Configured for hypervisor infrastructure traffic – L3 routed via spine layer
 - Live Migration VLAN: Configured for Live Migration traffic – L2 switched via leaf layer
 - VDI VLAN: Configured for VDI session traffic – L3 routed via spine layer
- **Management hosts**
 - Management VLAN: Configured for hypervisor Management traffic – L3 routed via spine layer
 - Live Migration VLAN: Configured for Live Migration traffic – L2 switched via leaf layer
 - VDI Management VLAN: Configured for VDI infrastructure traffic – L3 routed via spine layer
- An iDRAC VLAN is configured for all hardware management traffic – L3 routed via spine layer

5.3.1 vSphere

The Management host network configuration consists of a standard vSwitch teamed with 2 x 10Gb physical adapters assigned. The CVM connects to a private internal vSwitch as well as the standard external vSwitch. All VMkernel service ports connect to the standard external vSwitch. All VDI infrastructure VMs connect through the primary port group on the external vSwitch.
The Compute hosts are configured in the same basic manner with the desktop VMs connecting to the primary port group on the external vSwitch.

5.3.2 Hyper-V

The Hyper-V configuration, while identical in core requirements and hardware, is executed differently due to how Hyper-V and Windows Server 2012 R2 implement networking and virtual switches. As shown in the diagram below, native Windows Server 2012 R2 NIC Teaming is utilized to load balance and provide...
resiliency for network connections. For the compute host in this scenario, a single LBFO NIC team is configured to connect to a Hyper-V switch for external traffic and one internal Hyper-V switch is used for the Nutanix CVM. All vNICs associated with the Management OS connect directly to the external Hyper-V switch.

The NIC team for the Hyper-V switch is configured as switch independent, dynamic for the load balancing mode with all adapters set to active. This team is used exclusively by Hyper-V.
5.4 Scaling Guidance

Each component of the solution architecture scales independently according to the desired number of supported users. Additional appliance nodes can be added at any time to expand the Nutanix SDS pool in a modular fashion. While there is no scaling limit of the Nutanix architecture itself, practicality might suggest scaling pods based on the limits of hypervisor clusters (64 nodes for vSphere or Hyper-V). Isolating mgmt and compute to their own HA clusters provides more flexibility with regard to scaling and functional layer protection.
Another option is to design a large single contiguous NDFS namespace with multiple hypervisor clusters within to provide single pane of glass management. For example, portrayed below is a 30,000 professional user environment segmented by vSphere HA cluster and broker farm. Each farm compute instance is segmented into an HA cluster with a hot standby node providing N+1, served by a dedicated pair of mgmt nodes in a separate HA cluster. This provides multiple broker farms with separated HA protection while maintaining a single NDFS cluster across all nodes.

- The components are scaled either horizontally (by adding additional physical and virtual servers to the server pools) or vertically (by adding virtual resources to the infrastructure)
- Eliminate bandwidth and performance bottlenecks as much as possible
- Allow future horizontal and vertical scaling with the objective of reducing the future cost of ownership of the infrastructure.
Solution High Availability

High availability (HA) is offered to protect each architecture solution layer, individually if desired. Following the N+1 model, additional ToR switches are added to the Network layer and stacked to provide redundancy as required, additional compute and management hosts are added to their respective layers, vSphere or Hyper-V clustering is introduced in both the management and compute layers and SQL is mirrored or clustered. Storage protocol switch stacks and NAS selection will vary based on chosen solution architecture.

The HA options provide redundancy for all critical components in the stack while improving the performance and efficiency of the solution as a whole.

- Additional switches added to the existing thereby equally spreading each host’s network connections across multiple switches.
- Additional ESXi or Hyper-V hosts added in the compute or mgmt layers to provide N+1 protection.
- Applicable vWorkspace infrastructure server roles are duplicated and spread amongst mgmt host instances where connections to each are load balanced.
- SQL Server databases also are protected through the addition and configuration of an “AlwaysOn” Failover Cluster Instance or Availability Group.
5.6 Dell Wyse Datacenter for VWorkspace Communication Flow
6 Solution Performance and Testing

6.1 Load Generation and Monitoring

6.1.1 Login VSI 4 – Login Consultants
Login VSI is the de-facto industry standard tool for testing VDI environments and server-based computing or RDSH environments. It installs a standard collection of desktop application software (e.g. Microsoft Office, Adobe Acrobat Reader) on each VDI desktop; it then uses launcher systems to connect a specified number of users to available desktops within the environment. Once the user is connected the workload is started via a logon script which starts the test script once the user environment is configured by the logon script. Each launcher system can launch connections to a number of ‘target’ machines (i.e. VDI desktops), with the launchers being managed by a centralized management console, which is used to configure and manage the Login VSI environment.

6.1.2 VMware vCenter
VMware vCenter was used for VMware vSphere-based solutions to gather key data (CPU, Memory and Network usage) from each of the desktop hosts during each test run. This data was exported to .csv files for each host and then consolidated to show data from all hosts. While the report does not include specific performance metrics for the Management host servers, these servers were monitored during testing and were seen to be performing at an expected performance level.

6.1.3 Microsoft Perfmon
Microsoft Perfmon was utilized to collect performance data for tests performed on the Hyper-V platform.

6.2 Performance Analysis Methodology
In order to ensure the optimal combination of end-user experience (EUE) and cost-per-user, performance analysis and characterization (PAAC) on Dell Wyse Datacenter solutions is carried out using a carefully designed, holistic methodology that monitors both hardware resource utilization parameters and EUE during load-testing. This methodology is based on the three pillars shown below. Login VSI is currently the load-testing tool used during PAAC of Dell Wyse Datacenter solutions; Login VSI is the de-facto industry standard for VDI and server-based computing (SBC) environments and is discussed in more detail below.
6.2.1 Resource Utilization

Poor end-user experience is one of the main risk factors when implementing desktop virtualization but the root cause for poor end-user experience is resource contention – hardware resources at some point in the solution have been exhausted, thus causing the poor end-user experience. In order to ensure that this has not happened (and that it is not close to happening), PAAC on Dell Wyse Datacenter solutions monitors the relevant resource utilization parameters and applies relatively conservative thresholds as shown in the table below. As discussed above, these thresholds are carefully selected to deliver an optimal combination of good end-user experience and cost-per-user, while also providing burst capacity for seasonal / intermittent spikes in usage. These thresholds are used to decide the number of virtual desktops (density) that are hosted by a specific hardware environment (i.e. combination of server, storage and networking) that forms the basis for a Dell Wyse Datacenter RA.

<table>
<thead>
<tr>
<th>Resource Utilization Parameters</th>
<th>Pass / Fail Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Host CPU Utilization</td>
<td>85%</td>
</tr>
<tr>
<td>Physical Host Memory Utilization</td>
<td>85%</td>
</tr>
<tr>
<td>Network Throughput</td>
<td>85%</td>
</tr>
<tr>
<td>Storage IO Latency</td>
<td>20ms</td>
</tr>
</tbody>
</table>
6.2.2 Dell Wyse Datacenter Workloads and Profiles

It's important to understand user workloads and profiles when designing a desktop virtualization solution in order to understand the density numbers that the solution can support. At Dell, we use five workload / profile levels, each of which is bound by specific metrics and capabilities. In addition, we use workloads and profiles that are targeted at graphics-intensive use cases. We present more detailed information in relation to these workloads and profiles below but first it is useful to define the terms "workload" and "profile" as they are used in this document.

- **Profile**: This is the configuration of the virtual desktop - number of vCPUs and amount of RAM configured on the desktop (i.e. available to the user).
- **Workload**: This is the set of applications used by performance analysis and characterization (PAAC) of Dell Wyse Datacenter solutions e.g. Microsoft Office applications, PDF Reader, Internet Explorer etc.

<table>
<thead>
<tr>
<th>User Profile</th>
<th>vCPUs</th>
<th>Physical Memory</th>
<th>Hyper-V Min. Memory</th>
<th>Hyper-V Max Memory</th>
<th>ESXi Memory Reservation</th>
<th>Memory Configured</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>1</td>
<td>2GB</td>
<td>1GB</td>
<td>2GB</td>
<td>1GB</td>
<td>2GB</td>
<td>x86</td>
</tr>
<tr>
<td>Enhanced</td>
<td>2</td>
<td>3GB</td>
<td>1GB</td>
<td>3GB</td>
<td>1.5GB</td>
<td>3GB</td>
<td>x86</td>
</tr>
<tr>
<td>Professional</td>
<td>2</td>
<td>4GB</td>
<td>1GB</td>
<td>4GB</td>
<td>2GB</td>
<td>4GB</td>
<td>x64</td>
</tr>
</tbody>
</table>

6.2.3 Dell Wyse Datacenter Workloads

Load-testing on each of the profiles described in the above table is carried out using an appropriate workload that is representative of the relevant use case. In the case of the non-graphics workloads, these workloads are Login VSI workloads and in the case of graphics workloads, these are specially designed workloads that stress the VDI environment to a level that is appropriate for the relevant use case. This information is summarized in the table below:
<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Workload</th>
<th>OS Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Login VSI Light</td>
<td>Shared</td>
</tr>
<tr>
<td>Enhanced</td>
<td>Login VSI Medium</td>
<td>Shared</td>
</tr>
<tr>
<td>Professional</td>
<td>Login VSI Heavy</td>
<td>Shared + Profile Virtualization</td>
</tr>
<tr>
<td>Graphics</td>
<td>eFigures / AutoCAD - SPEC Viewperf</td>
<td>Persistent</td>
</tr>
</tbody>
</table>

Further information for each of the workloads is given below. It is noted that for Login VSI testing, the following login and boot paradigm is used:

- For single-server / single-host testing (typically carried out to determine the virtual desktop capacity of a specific physical server), users are logged in every 30 seconds.

- For multi-host / full solution testing, users are logged in over a period of 1-hour, to replicate the normal login storm in an enterprise environment.

- All desktops are pre-booted in advance of logins commencing.

- For all testing, all virtual desktops run an industry-standard anti-virus solution (currently McAfee VirusScan Enterprise) in order to fully replicate a customer environment.

6.2.3.1 Login VSI Light Workload

Compared to the Login VSI medium workload described below, the light workload runs fewer applications (mainly Excel and Internet Explorer with some minimal Word activity) and starts/stops the applications less frequently. This results in lower CPU, memory and disk IO usage.

6.2.3.2 Login VSI Medium Workload

The Login VSI medium workload is designed to run on 2vCPU’s per desktop VM. This workload emulates a medium knowledge worker using Office, IE, PDF and Java/FreeMind. The Login VSI medium workload has the following characteristics

- Once a session has been started the workload will repeat (loop) every 48 minutes.
- The loop is divided in four segments; each consecutive Login VSI user logon will start a different segment. This ensures that all elements in the workload are equally used throughout the test.
- The medium workload opens up to five applications simultaneously.
- The keyboard type rate is 160 ms for each character.
- Approximately two minutes of idle time is included to simulate real-world users.
Each loop opens and uses:

- Outlook, browse messages.
- Internet Explorer, browse different webpages and a YouTube style video (480p movie trailer) is opened three times in every loop.
- Word, one instance to measure response time, one instance to review and edit a document.
- Doro PDF Printer & Acrobat Reader, the Word document is printed and exported to PDF.
- Excel, a very large randomized sheet is opened.
- PowerPoint, a presentation is reviewed and edited.
- FreeMind, a Java based Mind Mapping application.

6.2.3.3 Login VSI Heavy Workload

The heavy workload is based on the medium workload except that the heavy workload:

- Begins by opening four instances of Internet Explorer. These instances stay open throughout the workload loop.
- Begins by opening two instances of Adobe Reader. These instances stay open throughout the workload loop.
- There are more PDF printer actions in the workload.
- Instead of 480p videos a 720p and a 1080p video are watched.
- Increased the time the workload plays a flash game.
- The idle time is reduced to two minutes.

6.3 Testing and Validation

6.3.1 Testing Process

The purpose of the single server testing is to validate the architectural assumptions made around the server stack. Each user load is tested against four runs. A pilot run is conducted to validate that the infrastructure is functioning and valid data is captured. Subsequently three more runs are conducted allowing for correlation of data. Summary of the test results is listed out in the below mentioned tabular format.

At different stages of the testing the testing team will complete some manual "User Experience" Testing while the environment is under load. This will involve a team member logging into a session during the run and completing tasks similar to the User Workload description. While this experience is subjective, it will help provide a better understanding of the end user experience of the desktop sessions, particularly under high load, and ensure that the data gathered is reliable.

Login VSI has two modes for launching user's sessions:

- Parallel
Sessions are launched from multiple launcher hosts in a round robin fashion; this mode is recommended by Login Consultants when running tests against multiple host servers. In parallel mode the VSI console is configured to launch a number of sessions over a specified time period (specified in seconds).

- Sequential
 Sessions are launched from each launcher host in sequence, sessions are only started from a second host once all sessions have been launched on the first host and this is repeated for each launcher host. Sequential launching is recommended by Login Consultants when testing a single desktop host server. The VSI console is configure to launch a specified number of session at a specified interval specified in seconds.

All test runs which involved the six desktop hosts were conducted using the Login VSI “Parallel Launch” mode and all sessions were launched over an hour to try and represent the typical 9am logon storm. Once the last user session has connected, the sessions are left to run for 15 minutes prior to the sessions being instructed to logout at the end of the current task sequence, this allows every user to complete a minimum of two task sequences within the run before logging out. The single server test runs were configured to launch user sessions every 60 seconds, as with the full bundle test runs sessions were left to run for 15 minutes after the last user connected prior to the sessions being instructed to log out.

6.4 vWorkspace Test Results

The following results represent 300 Premium workload users on a 3 node Nutanix cluster. One host was dedicated to Management while the remaining two hosts each delivered 150 Virtual Desktops.

Below is the configuration of the compute hosts used for this testing.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Config</th>
<th>CPU</th>
<th>Memory</th>
<th>RAID Ctrl</th>
<th>HD Config</th>
<th>Network</th>
<th>Login VSI Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC630</td>
<td>B7</td>
<td>E5-2698v3 (16Core, 2.3GHz)</td>
<td>384GB</td>
<td>H730P</td>
<td>1 X 64 GB SATADOM (CVM/ HV) 2 x 400GB, Intel S3700, SATA SSD’s 2.5” (T1) 8 x 1TB NL SAS 2.5” (T2)</td>
<td>Heavy</td>
<td></td>
</tr>
</tbody>
</table>

1GB networking was used for the deployment of the Bensen XC appliances while all 10GB networking was used for the PAAC testing.

A Dell Appliance Architecture
A Dell Appliance Architecture

Compute and Management resources were split out with the following configuration across a three node Nutanix cluster and all test runs were completed with this configuration.

- **Node3** – XC630 – Dedicated Management (vWorkspace Broker, SQL Server & File Services)
- **Node2** – XC630 – Dedicated Compute
- **Node1** – XC630 – Dedicated Compute

Please refer to **Section 5.1** for the configuration of each management virtual machine.

<table>
<thead>
<tr>
<th>Role</th>
<th>Config</th>
<th>vCPU</th>
<th>Startup RAM</th>
<th>Dynamic Memory</th>
<th>NIC</th>
<th>OS vDisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM B7</td>
<td>2</td>
<td>1GB</td>
<td>1024MB</td>
<td></td>
<td>20%</td>
<td>Med</td>
</tr>
</tbody>
</table>

The virtual machines were non-persistent vWorkspace desktops each configured on Windows 8.1 aligning with the Login VSI 4.X virtual machine configuration, Office2010 was used with each Virtual Machine sized at 25GB. User Workload configuration of the load generation virtual machines is shown in the table below.

The virtual machines were non-persistent linked clone desktops each configured on Windows 8.1 aligning with the Login VSI 4.X virtual machine configuration, Office 2010 was used with each Virtual Machine sized at 32 GB. User Workload configuration of the load generation virtual machines is shown in the table below.

<table>
<thead>
<tr>
<th>User Workload</th>
<th>vCPUs</th>
<th>Memory</th>
<th>OS Bit Level</th>
<th>HD Size GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional User</td>
<td>2</td>
<td>4GB</td>
<td>x64</td>
<td>32</td>
</tr>
</tbody>
</table>

The RDSH environment was configured as shown in the table below for each host according to platform. The RDSH images were built using Windows Server 2012 R2 Standard edition and Microsoft Office 2010 plus the support tools required for Login VSI testing.

<table>
<thead>
<tr>
<th>Role</th>
<th>Config</th>
<th>VMs per host</th>
<th>vCPUs</th>
<th>RAM (GB)</th>
<th>NIC</th>
<th>Disk Size GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDSH VMs</td>
<td>B7</td>
<td>5</td>
<td>8</td>
<td>32</td>
<td>1</td>
<td>80</td>
</tr>
</tbody>
</table>
6.4.1.1 vWorkspace, Heavy Workload – B7

Validation was performed using CCC standard testing methodology using LoginVSI 4 load generation tool for VDI benchmarking that simulates production user workloads. Dedupe on the performance Tier was turned on for this testing.

Each test run adhered to PAAC best practices with a 30 second session logon interval, 16 minutes of steady state after which sessions would begin logging off.

The following table summarizes the test results for the various workloads and configurations:

<table>
<thead>
<tr>
<th>Hypervisor</th>
<th>Provisioning</th>
<th>Workload</th>
<th>Density Per Host</th>
<th>Peak CPU %</th>
<th>Avg Memory Consumed</th>
<th>Avg IOPS/User</th>
<th>Avg Net Kbps/User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper-V</td>
<td>vWorkspace</td>
<td>Professional</td>
<td>155</td>
<td>75%</td>
<td>249 GB</td>
<td>7.45</td>
<td>666</td>
</tr>
</tbody>
</table>

CPU Utilization

CPU % for Hyper-V Hosts was adjusted to account for the fact that on Intel E5-2698v3 series processors the ESX host CPU metrics will exceed the rated 100% for the host if Turbo Boost is enabled (by default). The Adjusted CPU % Usage is based on 100% usage and but is not reflected in the charts. The figure shown in the table is the Compute host steady state peak CPU Usage. One Nutanix CVM Controller virtual machine is located on each node and is allocated 10000MHz of CPU reservation.

Memory utilization. The figure shown in the table above is the average memory consumed per Compute host over the recorded test period.

The IOPS results are calculated from the average Nutanix Cluster Disk IOPS figure over the test period divided by the number of users.

Network Utilization The figure shown in the table is the average Kilobits/sec/User per Compute host over the recorded test period.

6.4.1.2 Performance Results

The architecture for this solution includes a dedicated management host and two compute hosts. Each of the compute hosts was populated with 70 full virtual machines and one Nutanix CVM per host.

The Nutanix CVM’s took up approximately 12% of the compute hosts CPU Usage at the start of the test run.

This chart does not include the additional 10% of CPU available from the Turbo boost feature. With Turbo Boost included an additional 10% CPU is available for us.

A Dell Appliance Architecture
The below graph shows the performance data for 150 user sessions per host on a pair of Compute hosts. The CPU reaches a steady state peak of 75% during the test cycle when approximately 150 users are logged on to each compute host.

The Management host in the cluster runs the Cluster Shared Volume and vWorkspace management virtual machines and a Nutanix CVM virtual machine. Its CPU utilization is significantly lower than the compute hosts in the cluster. The CPU utilization for the management host does not exceed 10% at any point in the test cycle.

Memory consumption for the cluster, out of a total of 384 GB available memory per node there were no constraints for any of the hosts. The Compute Hosts reached a max memory consumption of 249 GB. This graph illustrates the level of available memory throughout the test cycle.
Dual port 10Gb Networking was used for the hosts. The graph below shows the utilization for each compute host in the cluster.

The following graphs show the storage utilization for the Nutanix Cluster. These graphs are taken from Prism. The below graph shows the Nutanix Controller CPU and Memory utilization. Neither exceeded 50% of the allocated resources.
The following graph shows the IOPS recorded by the Nutanix file system at peak of the test. This figure is 2237IOPS.

Next we look at the Network utilization at peak of the test. The utilization did not exceed 100Mb/ps.
In Summary, the performance of the solution under test was very good. CPU utilization at 75% indicates that additional virtual machines could be added to each compute node. Memory utilization peaked at 249 GB running the premium workload on compute nodes; on the Nutanix cluster the system memory utilization was low at 50% of the available memory. Subjective user test was excellent with no delay or grab experienced. Accessing media content was quick with no delay in the video stream.

6.4.1.3 vWorkspace/ RDSH, Standard Workload – B7
Validation was performed using CCC standard testing methodology using LoginVSI 4 load generation tool for VDI benchmarking that simulates production user workloads. Dedupe on the performance Tier was turned on for this testing.

Each test run adhered to PAAC best practices with a 30 second session logon interval, 16 minutes of steady state after which sessions would begin logging off.

The following table summarizes the test results for the various workloads and configurations:

<table>
<thead>
<tr>
<th>Hyper-Visor</th>
<th>Provisioning</th>
<th>Workload</th>
<th>Density Per Host</th>
<th>Peak CPU %</th>
<th>Avg Memory Consumed</th>
<th>Avg IOPS/User</th>
<th>Avg Net Kbps/User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper-V</td>
<td>vWorkspace</td>
<td>Standard</td>
<td>250</td>
<td>80%</td>
<td>180 GB</td>
<td>2.2</td>
<td>601</td>
</tr>
<tr>
<td></td>
<td>Session Hosts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPU Utilization CPU % for Hyper-V Hosts should be adjusted to account for the fact that on Intel E5-2698v3 series processors the ESX host CPU metrics will exceed the rated 100% for the host if Turbo Boost
is enabled (by default). The Adjusted CPU % Usage is based on 100% usage and but is not reflected in the charts. The figure shown in the table is the Compute host steady state peak CPU Usage. One Nutanix CVM Controller virtual machine is located on each node and is allocated 10000MHz of CPU reservation.

Memory utilization. The figure shown in the table above is the average memory consumed per Compute host over the recorded test period.

The IOPS results are calculated from the average Nutanix Cluster Disk IOPS figure over the test period divided by the number of users.

Network Utilization The figure shown in the table is the average Kilobits/sec/User per Compute host over the recorded test period.

6.4.1.4 Performance Results

The architecture for this solution includes a dedicated management host and two compute hosts. Each of the compute hosts was populated with 7 Server 2012 R2 Session hosts and one Nutanix CVM per host.

The Nutanix CVM's took up less than 10% of the compute hosts CPU Usage at the start of the test run.

This chart does not include the additional 10% of CPU available from the Turbo boost feature. With Turbo Boost included an additional 10% CPU is available for us.

The below graph shows the performance data for 250 user sessions per host on a pair of Compute hosts. The CPU reaches a steady state peak of 80% during the test cycle when approximately 250 users are logged on to each compute host.

![Compute Host CPU (% Total Run Time)](image)

A total of 520 sessions were launched to log in 500 users. 486 sessions went active during the test and 482 sessions logged out.
The Management host in the cluster runs the Cluster Shared Volume and vWorkspace management virtual machines and a Nutanix CVM virtual machine. Its CPU utilization is significantly lower than the compute hosts in the cluster. The CPU utilization for the management host does not exceed 10% at any point in the test cycle.

Memory consumption for the cluster, out of a total of 384 GB available memory per node there were no constraints for any of the hosts. Each host consumed circa 136GB of physical memory on average. Peak consumption during the log off period was 180GB.

Dual port 10Gb Networking was used for the hosts. The below graph shows the utilization for each compute host in the cluster.
In addition to the compute host metrics, Memory, CPU & IOPS information was collected for the 3 node Nutanix cluster. The following chart illustrates the CPU and Memory utilization during the test period. Neither Memory nor CPU for the Nutanix Cluster exceeded 24 & 27% respectively.

The following graph shows the IOPS recorded by the Nutanix file system at peak of the test. This figure is 1081.

Next we look at the Network utilization which accounted for less than 50% of the available bandwidth. This was not a bottleneck at any stage of the testing period.
In summary both Memory and CPU stats showed that additional sessions could be hosted per compute node. Please see the single node investigation that follows running 300 RDSH sessions on a single node.

CPU reached 90% with 287 out of 300 sessions logging in. Based on the CPU utilization a maximum of 300 sessions should be run to allow some system overhead.

Below is the memory consumption for this host also. A peak of 226GB was consumed during steady state of this test.

A Dell Appliance Architecture
Finally, we look at Network Utilization which showed no strain on the network at any time.

Analysis of the Nutanix File system showed 50% network utilization while both CPU and Memory consumption were low as expected.
In summary, the single node running 300 sessions showed that Network utilization was high on the Nutanix cluster but did not impact the user performance. User experience was good for each session and a user subjective test showed good performance.
Acknowledgements

Thank you to the Nutanix Technical Marketing team for the detail presented in section 2.2 of this document.
About the Authors

Peter Fine is the Sr. Principal Solutions Architect for enterprise VDI solutions at Dell. Peter has extensive experience and expertise on the broader Microsoft, Citrix and VMware solutions software stacks as well as in enterprise virtualization, storage, networking and enterprise data center design.

Andrew Breedy is a Solution Engineer working in the Dell-Wyse Datacenter engineering group. Andrew has extensive experience in server hardware and on Microsoft and VMWare virtualization solutions as well as a background in engineering test processes and performance analysis and characterization.

Jerry Van Blaricom is a Systems Principal Engineer in the Desktop Virtualization Solutions Group at Dell. Jerry has extensive experience with the design and implementation of a broad range of enterprise systems and is focused on making Dell’s virtualization offerings consistently best in class.

Rick Biedler is the Solutions Development Manager for Datacenter appliances at Dell, managing the development and delivery of Enterprise class Desktop virtualization solutions based on Dell datacenter components and core virtualization platforms.

Manish Chacko is the Sr. Technical Marketing Advisor for VDI-based solutions at Dell. Before writing about technology, Manish has spent time designing, implementing and supporting technology - in IT, Systems Engineering & Network Performance & Monitoring. Manish has been a long-time Dell customer & Advocate before becoming a Dell employee.