
 

                                          

 
 
 
 
 
 
 
 
 
 

Bootstrapping 
Open Source Clouds 
From test bench to hyperscale: 
Building your own open 
platforms and infrastructure 
 

A Dell technical white paper  

By: Rob Hirschfeld and Greg Althaus 

Updated December 2011 

 

 

 

 

Bringing open APIs and best practices to cloud operations. 
 

Tags: #DevOps, #Hyperscale, #OpenStack, #Crowbar 
 

 

 

 

 

 

 



Bootstrapping OpenStack Clouds 

2  

 

 

THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL 

INACCURACIES. THE CONTENT IS PROVIDED AS-IS, WITHOUT EXPRESS OR IMPLIED WARRANTIES OF ANY KIND. 

Table of Contents 
Executive Summary ........................................................................................................................... 3 

2011 Revision Notes ...................................................................................................................... 3 

OpenStack Taxonomy ....................................................................................................................... 3 

Taxonomy ....................................................................................................................................... 4 

Selecting a Platform ........................................................................................................................... 4 

Fundamental Hyperscale Design Patterns ..................................................................................... 5 

Fault Zones ...................................................................................................................................... 5 

Flatness at the Edges ..................................................................................................................... 6 

Choosing Hardware ........................................................................................................................... 6 

Network Configuration ..................................................................................................................... 8 

A Typical Topology.................................................................................................................... 8 

Design Guidelines .......................................................................................................................... 9 

Rule 1: Cost matters. ................................................................................................................. 9 

Rule 2: Keep your network flat. ............................................................................................. 10 

Rule 3: Filter at the edge. ....................................................................................................... 10 

Rule 4: Design fault zones. .................................................................................................... 10 

Rule 5: Plan for local traffic.................................................................................................... 10 

Rule 6: Offer load balancers. ................................................................................................. 10 

Operations Infrastructure ................................................................................................................ 11 

The Administration Server ........................................................................................................... 11 

Core Services ................................................................................................................................. 11 

Provisioning .................................................................................................................................. 12 

Monitoring ..................................................................................................................................... 12 

Beyond Bootstrapping: Laying Down OpenStack ...................................................................... 13 

Other Services .............................................................................................................................. 15 

Key Takeaways .................................................................................................................................. 16 

To Learn More .................................................................................................................................. 16 

 

  



Bootstrapping OpenStack Clouds 

3  

Executive Summary 
Bringing a cloud infrastructure online can be a daunting bootstrapping challenge. Before 

hanging out a shingle as a private or public cloud service provider, you must select a platform, 

acquire hardware, configure your network, set up operations services, and integrate it to work 

well together. That is a lot of moving parts before you have even installed a sellable application. 

This white paper walks you through the decision process to get started with an open source 

cloud infrastructure based on OpenStack™ and Dell™ PowerEdge™ C servers. At the end, you’ll 

be ready to design your own trial system that will serve as the foundation of your hyperscale 

cloud. 

2011 Revision Notes  
In the year since the the original publication of this white paper, we worked with many 

customers building OpenStack clouds. These clouds range in size from small six-node lab 

systems to larger production deployments. Based on these experiences, we updated this white 

paper to reflect lessons learned. 

OpenStack Taxonomy 
In the Diablo design, the Dell OpenStack-Powered Cloud Solution contains the core 

components of a typical OpenStack solution: Nova, Nova-Dashboard/Horizon Swift, Glance, 

and Keystone, plus components that that span the entire system such as Crowbar, Chef, Nagios, 

etc.   

The taxonomy presented in Figure 1 reflects both included infrastructure components (shown 

in lime green) and OpenStack-specific components that are under active development (shown 

in red) by the community, Dell, and Dell partners. The taxonomy reflects a CloudOps 0F

1
 

perspective that there are two sides for cloud users: standards-based API (shown in pink) 

interactions and site-specific infrastructure. The standards-based APIs are the same between all 

OpenStack deployments, and let customers and vendor ecosystems operate across multiple 

clouds. The site-specific infrastructure combines open and proprietary software, Dell hardware, 

and operational process to deliver cloud resources as a service.  

 

                                                           

1 For more information about “CloudOps,” please read the CloudOps white paper by Rob Hirschfeld. 

 

Getting Started  

If you want a serious 

leg up toward a 

working cloud, Dell 

offers an OpenStack™ -

Powered Cloud 

Solution built using the 

principles discussed in 

this white paper.  

This solution includes  

a base hardware 

specification and 

Crowbar, a Dell-

authored open source 

software framework, 

which takes you from 

unboxing servers to 

running a usable open 

source cloud in hours. 

Email us at 

OpenStack@Dell.com  

if you are interested in 

learning more. 

 

http://content.dell.com/us/en/enterprise/d/business~solutions~whitepapers~en/Documents~cloud-ops-for-openstack.pdf.aspx
mailto:OpenStack@Dell.com


Bootstrapping OpenStack Clouds 

4  

Taxonomy 
The implementation choices for each cloud infrastructure are highly specific to the needs and 

requirements of each site. Many of these choices can be standardized and automated using the 

tools in this reference architecture (specifically Crowbar) and following the recommended 

CloudOps processes. Conforming to best practices can help reduce operational risk. 

Selecting a Platform 
This white paper assumes that you’ve selected OpenStack as your cloud infrastructure platform. 

While the concepts would hold for most cloud infrastructures, it’s helpful to focus on a single 

platform for this reference. OpenStack is particularly interesting as an open source cloud 

platform because it: 

 Supports the two top public compute cloud application programming interfaces, or 

APIs: Amazon® and OpenStack (deployed at Rackspace®, Internap®, DreamHost®, 

HP®, and others 

 Supports the top open source hypervisors: open source KVM and Xen®, proprietary 

VMware® and HyperV™ 

 Can run guests using Windows®, Linux®, or other x86-based operating systems 

 Deployed at hyperscale (>1000 nodes) at multiple sites such as NASA, Rackspace, and 

others, and smaller sites globally 

 Is truly open and community developed allowing fixes, support, and extend features as 

needed 

 Has a significant, growing, international community adding new features. 

OpenStack represents an innovator’s paradise: It offers support for existing ecosystems and 

opportunities to influence future direction, and it provides the foundational components for a 

cloud service. By building on this foundation, you can create a complete cloud solution. 

Figure 1. Cloud taxonomy using Dell, OpenStack, and community components 



Bootstrapping OpenStack Clouds 

5  

Dell has been helping groups deploy OpenStack since the Cactus release. Dell’s OpenStack 

getting-started kit specifically targets pilots by reducing setup time and lessening the learning 

curve to configure a base OpenStack cloud using the Dell Crowbar software framework. 

There are five primary components of OpenStack: Authentication (Keystone), Compute (Nova), 

Object Storage (Swift), Dashboard (Horizon), and an Image Service (Glance). Our focus is on 

preparing an environment to run OpenStack.  

Note: Dell has solutions targeted for customers interested in using OpenStack. Email us at 

OpenStack@Dell.com if you are interested in learning more. 

Fundamental Hyperscale Design Patterns  
Hyperscale designs are based on observations for large-scale public clouds. In practice, cloud 

providers make decisions based on their capabilities, customer targets, risk tolerance, finances, 

and scale objectives. For example, OpenStack Swift comprehends hyperscale concepts like 

network zones and just a bunch of disks (JBODs) storage as primary concepts. In updating this 

white paper, we have attempted to reflect a broader range of scale alternatives. 

Fault Zones 
Building a hyperscale cloud requires a different mindset − we like to call it “revolutionary” 

compared to a traditional enterprise virtualized infrastructure. This means driving a degree of 

simplicity, homogeneity, and density that is beyond most enterprise systems.  

The core lesson of these large systems is that redundancy moves from the hardware into the 

software and applications. In fact, the expectation of failure is built into the system as a key 

assumption because daily failures are a fact of life when you have thousands of servers. 

To achieve scale, individual components intentionally lack network, power, and disk redundancy. 

Servers are configured with single network paths, single power supplies, and non-RAIDed drives 

(a.k.a. JBOD). That means that a power distribution unit (PDU), or rack switch failure will take 

down a handfull of servers. To accommodate this risk, the system is divided into what we call 

“fault zones.”  Applications and data are striped across fault zones (similar to data stripping on a 

RAID) to isolate the impact of multiple component failures. 

What is a ‘hyperscale 

cloud’? 

Hyperscale systems are 

designed to operate 

thousands of servers 

under a single 

management 

infrastructure. The 

scope of these systems 

requires a different 

management 

paradigm in which 

hardware faults are 

common, manual 

steps are not practical, 

and small costs add up 

to large economic 

impacts. 

An example of small 

costs adding to big 

impacts: changing a 

six-drive array from 

RAID 5 to RAID 10 

would reduce total 

storage by 40 percent. 

Put another way, you’d 

have to buy 66 percent 

more disk (10 instead 

of 6 drives) for the 

same total storage! 

 

Figure 2. Striping applications and data across fault zones 

mailto:OpenStack@Dell.com


Bootstrapping OpenStack Clouds 

6  

The benefits of this design approach are significant: 

 The ability to choose non-redundant components (disk, server and network) with a 

lower total cost of ownership (TCO) 

 Simpler network routing and configuration 

 Simpler physical data center layouts 

 Higher density because capacity is not lost to redundant disk, network, and power 

 Predictable and streamlined setups and deployment processes. 

It is important to point out that core networking is still constructed with redundant and 

hardware-fault-tolerant paths. 

As a consumer of this infrastructure approach, applications must take a fault-zone-tolerant 

deployment model. See more detail in blogs posts and presentations about application striping 

using redundant arrays of inexpensive nodes (RAIN). 

Flatness at the Edges 
“Flatness at the edges” is one of the guiding principles of hyperscale cloud designs. Flatness 

means that cloud infrastructure avoids creating tiers where possible. For example, having a blade 

in a frame aggregating networking that is connected to a SAN via a VLAN is a tiered design in 

which the components are vertically coupled. A single node with local disk connected directly 

to the switch has all the same components but in a single “flat” layer. Edges are the bottom tier 

(or “leaves”) of the cloud. Being flat creates a lot of edges because most of the components are 

self-contained. To scale and reduce complexity, clouds must rely on the edges to make 

independent decisions, such as how to route network traffic, where to replicate data, or when to 

throttle virtual machines (VMs). We are effectively distributing an intelligence overhead tax on 

each component of the cloud rather than relying on a “centralized overcloud” to rule them all.  

Choosing Hardware 
Choosing cloud hardware requires committing to a fault-tolerance strategy that matches your 

operations model. For hyperscale clouds, our customers had already invested in highly 

automated DevOps tooling that made their applications very elastic.  

This elasticity allowed our customers to limit the impact of hardware failures and changed how 

they approached infrastructure redundancy. Just as a RAID system focuses on using 

interchangeable commodity disks, clouds can be built using interchangeable utility servers. The 

logic is that you will have sufficient scale to create redundancy at the application level. 

Note: Smaller clouds cannot achieve redundancy through volume. We have seen that 

customers typically start with more hardware redundancy while they are building out their initial 

cloud. 

Modularity is a critical value to help reduce complexity. When clouds are measured in the 

hundreds of nodes, it can be difficult to manage nodes that are linked in groups of six to a 

dedicated SAN and then connected with eight or more pairs of teamed network interface 

controllers (NICs) to different cross-connected switches. If just describing the system is difficult, 

then imagine trying to design, document, and maintain it.  

Fundamentally, hyperscale clouds have less shared physical infrastructure by design because 

physical infrastructure is harder to configure, manage, and troubleshoot. It also has the 

unfortunate side-effect of causing broader systems outages. While the individual components 

Concepts like 

“Flatness at the Edges”  

are based on 

operating hyperscale 

clouds. In many cases, 

hyperscale design 

requirements are 

contrary to traditional 

data center objectives 

because they have 

different core 

assumptions. 

The Dell Data Center 

Solutions (DCS) group 

has been helping 

customers build 

clouds at this scale for 

years. The innovations 

from these hyperscale 

data centers have 

become more widely 

available and can now 

be successfully 

applied at a moderate 

scale. 

 



Bootstrapping OpenStack Clouds 

7  

may be more likely to fail in this model, the impact of those failures is more isolated, smaller, and 

much easier to correct quickly. 

In our experience, nodes fall into one of four performance categories: 

 Compute solutions are not as common for virtual machine (VM)-based clouds but 

typical for some analytics systems (interestingly, many analytics are more disk- and 

network-bound). In practice, cloud applications are more likely to scale out than up.  

 Storage solutions should be treated with caution. Use IP-network-based iSCSI storage 

area network (SAN) or network area storage (NAS) storage because it’s much easier to 

centralize big data than drag all of it to your local nodes. Note: If you have a solution 

that needs really big storage and lots of VMs, then it may not be a good cloud 

application. 

 Network solutions may really be compute-heavy systems in disguise. Unless you are 

packing a lot of RAM and CPU into your systems, it’s unlikely that you will hit the wall 

on networking bandwidth. Remote storage is a primary driver for needing more 

networking capacity, so you may solve your networking constraints by using more 

local disk. 

 Balanced solutions are a good compromise because even the most basic VM 

placement can distribute VMs to level resource use. This is likely to become even easier 

when live migration is a standard feature. 

Comparing these four categories to available Dell PowerEdge C server models, the balanced-

focus server seems to handle the broadest range of applications for compute while the storage 

node is the best choice for storage. We recommend the balanced node for trial systems 

because it can be easily repurposed anywhere else as your cloud grows. 

Focus Dell Model Rack U Cores RAM Disks/Node Disk/Core Net/Core 

Compute PowerEdge 
C6100  
4 sleds (pictured 
above) 

2 32 192 6  3:16 1:2 

Balanced PowerEdge 
C6100  
2 sleds 

2 16 96 12 3:4 1:2 

Storage PowerEdge 
C2100  

2 8 48 24 3:1 1:2 

Network PowerEdge 
C2100 + 
10-Gb NICs 

2 12 48 24 2:1 ~ 2:1 

 

 

 

 

“To RAID or not to 

RAID, that is the 

question.”  

Using hardware RAID 

on compute nodes can 

provide an additional 

safety net for customer 

data. This is important 

when you do not 

expect (or force) 

customers to scale on 

multiple nodes or use 

network storage for 

critical data. 

The downside of RAID 

is that it reduces 

storage capacity while 

adding cost and 

complexity. RAID may 

also underperform 

JBOD configurations if 

VM I/O is not uniform. 

Ultimately, your Ops 

capability and risk 

tolerance determine if 

RAID is the right fit. 

 

Figure 3. Dell PowerEdge C6100 server with four server node sleds 



Bootstrapping OpenStack Clouds 

8  

Assumptions: 

 48 gigabytes (GB) per node (actual RAM is often higher based on expected use of the 

server).  

 2.5-inch drives boost spindle counts. 3.5-inch drives offer more capacity and less cost 

but lower input/output operations per second (I/OPS). 

 Disk/core assumes unRAIDed drives for comparison. Counts decrease if RAID systems 

are used. 

 Four NICs per node, as per guidance in the “Network Configuration” section of this 

paper. 

The key to selecting hardware is to determine your target ratios. For example, if you are 

planning compute to have one core per VM (a conservative estimate), then a balanced system 

would net nearly one spindle per VM. That effectively creates a dedicated I/O channel for each 

VM and gives plenty of storage. While you may target higher densities, it’s useful to understand 

that the one core class of VMs has nearly dedicated resources. Flatness at the edges 

encourages this type of isolation at the VM level because it eliminates interdependencies at the 

maximum possible granularity. 

When you look at storage hardware, it can be difficult to find a high enough disk-to-core ratio. 

For solutions like Swift, you may want to consider the most power-efficient CPUs and largest 

disks. Object stores are often fronted with a cache so that high-demand files do not hit the 

actual storage nodes. 

So let’s look at the concept of a mixed storage and compute system. In that model, the same 

nodes perform both compute and storage functions. For that configuration, the network-

optimized node seems to be the best compromise; however, we consistently return to finding 

that a mixed-use node has too many compromises and ends up being more expensive—10-

gigabit (Gb) networking has a hefty premium still—compared to a heterogeneous system. 

There is one exception: We recommend a mixed-use system for small-scale pilots because it 

provides more flexibility while learning to use cloud infrastructure. 

As with any design, the challenge is to prevent exceptions from forcing suboptimal design 

changes. For example, the need to host some 100-Gb disk VMs should not force the entire 

infrastructure into a storage-heavy pattern. It is likely that a better design would be 20-Gb VMs 

on fast local disk with a single shared iSCSI SAN or NAS target to handle the exceptions as 

secondary drives. For service providers, these exceptions become premium features. 

Network Configuration 
It is impossible to overstate the importance of networking for hyperscale 

clouds, but importance should not translate into complexity. The key to cloud 

networking is to simplify and flatten. Achieving this design objective requires 

making choices that are contrary to enterprise network topologies. 

A Typical Topology 

Best practice for hyperscale clouds calls for four logical primary networks. In 

practice, these networks are logically isolated on physically shared segments. 

Best practice is to use teaming to aggregate bandwidth between NICS and 

improve redundancy. 

 

Hyperscale clouds are 

fundamentally 

multitenant. The ability 

to mix unrelated work 

together enables large-

scale cloud load 

balancing. The 

expectation of dynamic 

demand pairs with the 

feature of resource 

elasticity.  

Our multitenant 

assumption creates a 

requirement paradox: 

We need both isolation 

and aggressive 

intermixing. It should be 

no surprise that the 

answer is virtualization 

of compute, network, 

and storage. 

 

Figure 4. Four logical primary networks 



Bootstrapping OpenStack Clouds 

9  

1. The administration network connects the cloud infrastructure management to the 

nodes that run the cloud workloads. This network is restricted and not accessible to 

VMs. See the “Operations Infrastructure” 

section for more information. 
2. The internal network provides connectivity 

between VMs and services (e.g. the object 

store) within the cloud. This network typically 

carries the bulk of the cloud traffic, and 

customers are not charged for bandwidth 

consumed internally. 
3. The external network connects VMs to the 

Internet and is metered so use can be charged 

against the customer. 
4. Use of a storage network is recommended 

when using centralized storage to isolate the 

impact of large transfers on other networks.  

There are several reasons for teaming the networks but 

the primary one is bandwidth aggregation to help 

maximize the available bandwidth. Teaming also improves fault tolerance: if connectivity is lost 

to the node, then it cannot generate revenue. Logical segmentation also allows for better IP 

management. Surprisingly, security is not a motivation for segmentation. In a multi-tenant 

cloud, we must assume that untrusted users can penetrate to VMs that have access to the 

internal network; consequently, we must rely on better methods to isolate intruders. 

We are seeing 10-Gb networking becoming a default option for OpenStack clouds. The typical 

configuration is to use two teamed physical 10-Gb NICs. Typically, on-board 1-Gb NICs are also 

used for the admin. network and Intelligent Platform Management Interface (IPMI). 

Design Guidelines 
Since there is no one-size-fits-all topology, we will outline some basic rules for constructing 

cloud networks, presented in priority order. Following these rules will help ensure you have a 

solid cloud connectivity foundation. 

Rule 1: Cost matters. 

Creating unused capacity wastes money. Idle backup links and under-subscribed bandwidth can 

more than double costs. Logical segmentation (instead of physical) and teaming NICs allows 

configuration of fewer network drops and can help economically leverage your network. This is 

especially true with 10-Gb networks, which carry much higher costs than 1-Gb switches.  

A true hyperscale cloud network should be able to use simpler switches, embracing fault zones. 

In the largest configurations, each server connects to just one switch. This means the need for 

fewer switches, fewer ports, less sophisticated paths, and shorter wires. Hyperscale clouds 

choose system-level redundancy plus more (low-cost) resources as a way to improve fault 

tolerance. 

In practice, most clouds cannot tolerate the fault risk of network failures like hyperscale clouds. 

We see most customers investing in redundant networks with teaming and using logical 

segmentation (VLANs) to provide isolation. This allows the nodes to leverage all the available 

network connections elastically. 

 

New Advice about 

Network Teaming 

Our 2010 advice was to 

avoid complexity in favor 

of physical isolation. 

This is no longer our 

recommendation.  

We have found that 

teaming can be easily 

configured in an 

automated fashion and 

better accommodate 

elastic bandwidth 

allocation on 10-Gb 

links. 

 

Figure 5. Top of rack switches stacked to 
create a high speed local fabric avoids 
sending traffic through the core network 
switches 



Bootstrapping OpenStack Clouds 

10  

Rule 2: Keep your network flat. 

Four thousand ninety six sounds like a big number. That is the maximum number of VLANs that 

most networks will support without forcing you to get creative. You will need some VLANs to 

create logical networks and manage broadcast domains; however, using VLANs to segment 

tenant traffic will not scale. Our current density recommendation is 36 nodes per rack. If each 

node supports 32 VMs (four per core) then each rack will sustain 1,152 VMs and require an 

allocation of nearly 2,500 IPs addresses. Managing tiered networks and VLANs for systems at 

that density is not practical; consequently, cloud networks tend to be as flat as possible. 

Our cloud network reference designs use stacking to create a logical top-of-rack switch: 

Stacking uses a short-distance switch to switch 14-Gb interconnect networking that effectively 

merges all the switches. This allows for extremely fast and simple communication between 

nodes in the rack, and stacked switches can share 10-Gb uplinks to core routers per switch. 

This way, each switch can still be an isolated fault zone without paying the price of routing all 

traffic to the core. 

Rule 3: Filter at the edge. 

Since VLANs do not scale, we need another way to prevent unwanted cross-tenant 

communication. One solution is to edge filter traffic at the node level. This requires the cloud 

management system, OpenStack Nova, to set up network access rules for each VM that it 

deploys. The rules must allow VMs from the same tenant to talk to each other while blocking 

other traffic. Currently, Linux IPTables is the tool of choice for this filtering, but look for the 

OpenStack Quantum project which leverages OpenFlow and Open vSwitch. 

Rule 4: Design fault zones. 

Identify fault zones in your network topology. Remember that fault zones are used to both 

isolate the impact of failures and simplify design. The lowest paid data center tech and highly 

automated cloud management system must be able to understand the topology. 

Rule 5: Plan for local traffic. 

Cloud applications are much more likely to be chatty scale-out architectures than traditional 

tiered designs. While this delivers reliability by spreading work across fault zones, it creates a lot 

of internal network traffic. If this internal traffic has to route between switches over the core 

network, then you can oversubscribe your core bandwidth and impact external 

communications. Luckily, it is possible to predict internal communication because it is mainly 

between VMs for each tenant. This can be mitigated with additional outbound links, stacking 

top-of-rack switches (see Rule 1 above), and clustering a tenant so most of its traffic 

aggregates into the same core switches. 

Rule 6: Offer load balancers. 

Our final rule helps enable good architecture hygiene by cloud users: offer load balancers. 

Making load balancers inexpensive and easy to use encourages customers to scale out their 

applications. Cloud providers need scaled-out applications to span fault zones and mitigate a 

hyperscale clouds’ higher risk of edge failures. Several public clouds integrate load balancing as 

a core service, or make pre-configured load balancer VMs easily available. If you are not 

encouraging customers to scale out their applications, then you should plan to scale out your 

help desk and operations (Ops) teams. 

  

32
nd

 Rule of Complexity  

If you’ve studied 

computer science then 

you know there are 

algorithms that calculate 

“complexity.”  

Unfortunately, these 

have little practical use 

for data center 

operators. 

Our complexity rule does 

not require a PhD: 

If it takes more than 30 

seconds to pick out what 

would be impacted by a 

device failure then your 

design is too complex. 

 



Bootstrapping OpenStack Clouds 

11  

Operations Infrastructure 
One of the critical lessons learned about cloud bootstrapping is that Ops capabilities are just as 

fundamental to success as hardware and software. You will need the same basic core Ops 

components whether you are planning a 1,000-node public cloud or a six-node lab. These 

services build upwards in layers from core network services to monitoring, to provisioning and 

access. 

The Administration Server 
Before we jump into specific services to deploy, it’s important to allocate a small fraction (one 

for each 100 nodes) of infrastructure as an administration (Admin) service. In all of our 

deployment scripts, this server is the first one configured and provides the operations services 

that the rest of the infrastructure relies on. This server is not the one running your external APIs 

or portals; it is strictly for internal infrastructure management. During bootstrapping, it is the 

image server and deployment manager. Post bootstrapping, it can be your bastion host and 

monitoring system. Even in our smallest systems, we make sure to dedicate a server for Admin 

because it makes operating the cloud substantially easier. As we’ll explore below, the Admin 

server is a real workhorse.  

Core Services 
Core services enable the most basic access and coordination of the infrastructure. These 

services are essential to cloud operations because the rest of the infrastructure anticipates a 

data center level of Ops capability. Unlike a single-node targeted SQL server, cloud software 

expects to operate in an Internet data center with all the services and network connectivity that 

comes with being “on the net.”   

Here’s the list of core services: 

Service Name Comments 

Address 

Allocation 

Static 
and 
DHCP 

We’ve found that DHCP on the Admin network allows for 
central administration of node addresses and can be 
used to convey configuration information beyond IP 
address. We use static addressing on the other segments 
to avoid collisions with VM-focused network 
management services. 

Domain Names DNS Nodes must be are able to resolve names for themselves, 

other nodes, the admin, and clients. Using a cloud DNS 

server eliminates external dependencies. Ultimately, 

clouds generate a lot of DNS activity and need to be able 

to control names within their domain. 

Time 

Synchronization 

NTP Since the systems are generating certificates for 

communications, even small time drift can make it 

difficult to troubleshoot issues. 

Network Install PXE PXE is required because it’s impractical to install bits on 

large number of servers from media. 

Network Access Bastion 
Host 

Recommended: To create (or resolve) network isolation, 

a bastion host can be configured to limit access to the 

admin network (production), or create access to the 

production networks (restricted lab). 

 

We have gone back and 

forth about using 

Dynamic Host 

Configuration Protocol 

(DHCP) during normal 

operations. Initially, we 

were reluctant to 

introduce yet another 

dependency to set up 

and maintain.  

Ultimately, we 

embraced DHCP for the 

Admin network 

because it can be used 

for both delivery boot-

up configuration and to 

sustain our PXE 

integration. Now that 

we have the 

infrastructure in place, 

we use DHCP and PXE 

to automate BIOS 

updates by booting 

through a patch image. 



Bootstrapping OpenStack Clouds 

12  

Service Name Comments 

Outbound Email SMTP Recommended:  Most cloud components will send email 

for alerts or account creation. Not being able to send 

email may cause hangs or errors so it’s advisable to plan 

for routing email. 

 

Provisioning 
The most obvious challenge for hyperscale is the degree of repetition required to bring 

systems online (a.k.a. provision) and then maintain their patch levels. This is especially 

challenging for dynamic projects like OpenStack where new features or patches may surface 

at any time. In the Dell cloud development labs, we plan for a weekly rebuild of the entire 

system. 

To keep up with these installs, we invest in learning deployment tools like Puppet and Chef. 

Our cloud automation leverages a Chef server on the Admin and Chef clients included on the 

node images. After the operating system has been laid down by PXE on a node, the Chef client 

will retrieve the node’s specific configuration from the server. The configuration scripts 

(recipes and cookbooks in Chef vernacular) not only install the correct packages, they also lay 

down the customized configuration and data files needed for that specific node. For example, 

a Swift data node must be given its correct ring configuration file. 

To truly bootstrap a cloud, deployment automation must be understood as an interconnected 

system. We have been calling this description a “meta configuration.” Ops must make 

informed decisions about which drives belong to each Swift rung and which Nova nodes 

belong to each scheduler. To help simplify trial systems, Crowbar makes recommendations 

based on your specific infrastructure. Ultimately, you must take the time to map the 

dependencies and fault zones of your infrastructure because each cloud is unique. 

Monitoring 
Once the nodes are provisioned, Ops must keep the system running. With hundreds of nodes 

and thousands of spindles, failures and performance collisions are normal occurrences. Of 

course, cloud software takes the crisis out of faults because it is designed to accommodate 

failures; however, Ops still needs to find and repair the faults. While edge faults should not 

cause panic, they can degrade available capacity. Good cloud design needs overhead to 

account for planned (patches) and unplanned (failures) outages. 

To accommodate this need, it is essential to set up a health and performance monitoring 

system for your cloud infrastructure. Cloud monitoring is a well understood and a highly 

competitive market. If you have an existing Ops infrastructure, then you can leverage your 

existing systems. For automated OpenStack lab systems, we’ve integrated open source tools 

Nagios (health) and Ganglia (performance) into the automated deployment scripts. As we began 

testing our clouds, we found it very helpful to have these capabilities immediately available. 

  

Want to move faster? 

Dell has created the 

Crowbar software 

framework to help 

automate cloud 

bootstrapping processes 

and install the 

OpenStack components 

described in this white 

paper.  

Crowbar is included as 

part of the Dell 

OpenStack-Powered 

Cloud Solution.  

Crowbar is also online as 

an Apache 2 licensed 

open source project with 

a vibrant community.  

 



Bootstrapping OpenStack Clouds 

13  

Beyond Bootstrapping: Laying Down OpenStack 
So far, we have focused on preparing the beds for our hyperscale garden: fault zones, servers, 

networks, and operations infrastructure that all contribute to a rich crop of cloud services.  

Once you have completed these activities, you have booted up your cloud and it is time to 

start installing your cloud software. 

This white paper focuses on design considerations before installing your OpenStack cloud 

software. While covering a complete OpenStack installation is beyond the scope, we want to 

give you a starting place as you step into the next phase of your cloud deployment.  

 

 

  

 

Since the 2010 

publication of this white 

paper, Crowbar has 

taken on a more general 

role.  

Crowbar is also part of 

our Apache™ Hadoop™ 

solutions.  

In addition, open cloud 

applications such as 

Dreamhost Ceph™ block 

storage and VMware® 

Cloud Foundry™ PaaS 

have created Crowbar 

modules known as 

“barclamps.”  

Barclamps are Crowbar 

modules that 

recommend, install and 

configure software to 

operate distributed 

scale-out environments.  

The deployment team 

can choose the software 

components they would 

like to install to create 

the cloud/cluster that’s 

right for their needs.  

 

Figure 6: OpenStack architecture 



Bootstrapping OpenStack Clouds 

14  

The following component descriptions are from the http://OpenStack.org site. Extensive 

documentation for the OpenStack components is available at http://docs.openstack.org/ 

Function Code Name URL 

Authentication Keystone http://openstack.org/projects/  

Identity Service provides unified authentication 
across OpenStack projects and integrates with 
existing authentication systems. 

Dashboard / 
Portal 

Horizon http://openstack.org/projects/  

OpenStack Dashboard enables administrators and 
users to access and provision cloud-based 
resources through a self-service portal. 

Object 
Storage 

Swift http://openstack.org/projects/storage/ 

OpenStack Object Storage (code-named Swift) is 
open source software for creating redundant, 
scalable object storage using clusters of 
standardized servers to store petabytes of 
accessible data. It is not a file system, nor real-
time data storage system, but rather a long-term 
storage system for a more permanent type of 
static data that can be retrieved, leveraged, and 
then updated if necessary. Primary examples of 
data that best fit this type of storage model are 
virtual machine images, photo storage, email 
storage, and backup archiving. Having no central 
“brain” or master point of control provides greater 
scalability, redundancy, and permanence. 

 

Objects are written to multiple hardware devices 
in the data center, with the OpenStack software 
responsible for ensuring data replication and 
integrity across the cluster. Storage clusters can 
scale horizontally by adding new nodes. Should a 
node fail, OpenStack works to replicate its 
content from other active nodes. Because 
OpenStack uses software logic to ensure data 
replication and distribution across different 
devices, inexpensive commodity hard drives and 
servers can be used in lieu of more expensive 
equipment. 

Compute / 
IaaS 

Nova http://openstack.org/projects/compute/ 

OpenStack Compute is open source software 
designed to provision and manage large networks 
of virtual machines, creating a redundant and 
scalable cloud computing platform. It gives you 
the software, control panels, and APIs required to 
orchestrate a cloud, including running instances, 
managing networks, and controlling access 
through users and projects. OpenStack Compute 
strives to be both hardware and hypervisor 
agnostic, currently supporting a variety of 
standard hardware configurations and seven 
major hypervisors. 

http://openstack.org/
http://docs.openstack.org/
http://openstack.org/projects/
http://openstack.org/projects/
http://openstack.org/projects/storage/
http://openstack.org/projects/compute/


Bootstrapping OpenStack Clouds 

15  

Virtual Images Glance http://openstack.org/projects/image-service 

OpenStack Image Service (code-named Glance) 
provides discovery, registration, and delivery 
services for virtual disk images. The Image Service 
API server provides a standard REST interface for 
querying information about virtual disk images 
stored in a variety of back-end stores, including 
OpenStack Object Storage. Clients can register 
new virtual disk images with the Image Service, 
query for information on publicly available disk 
images, and use the Image Service’s client library 
for streaming virtual disk images. 

Other Services 
OpenStack provides an infrastructure foundation for hyperscale cloud; however, it is not a total 

solution. Depending on your objectives, additional components will be required to operate your 

cloud. These components may enable software developers, integrate with internal systems, 

provide prebuilt templates, and extend operations capabilities.  

Some of components to consider are: 

 Application support components include data storage services like structured databases 

(SQL), table storage (NoSQL), queuing services (AMQP), content delivery networks 

(CDN), and even an application programming platform (PaaS).  

 Integrations such as billing, authentication, and VPN tunneling all help customers 

connect with their internal systems. 

 Prebuilt templates and uploading images using open virtualization format (OVF) or 

similar technologies improves interoperability and allows customers to reuse work from 

other clouds. 

 Operations services that take over operations challenges by offering load balancers, 

firewalls, security services, backups, access monitoring, or log collection can be a 

substantial benefit while leveraging economy of scale. 

There are an overwhelming number of opportunities to expand beyond the OpenStack 

foundation. By investing in an open cloud infrastructure platform, you can expand the 

ecosystem of services and partners. Having a shared platform can reduce duplicated effort and 

having a large ecosystem encourages innovation and investment to solve difficult problems.  

http://openstack.org/projects/image-service


Bootstrapping OpenStack Clouds 

16  

Key Takeaways 
Designing an open source hyperscale data center requires thinking about operational problems 

differently. The large amount of resources not only creates unique complexity management 

challenges, but also enables solving problems by broadly distributing resources instead of 

relying on local redundancy. 

Logical configuration is just as important as physical layout. Every step away from simplicity will 

cause exponential growth in complexity at scale. Find ways to automate and monitor. 

To help accelerate evaluation of this powerful cloud platform, Dell has invested in creating a 

more effortless out-of-box experience using our open sourced Crowbar software framework. 

Combined with Dell’s industry-leading PowerEdge C cloud optimized hardware, our cloud 

installation automation helps ensure that you can confidently build a cloud infrastructure 

solution to meet your needs over time.  

Dell is an active participant in the OpenStack community because OpenStack has the potential 

to bring open APIs, capable practices to cloud operations, and affordable infrastructure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

    To Learn More  
For more information on Dell and OpenStack, visit: 
  

www.Dell.com/OpenStack  

 
 
©2012 Dell Inc. All rights reserved. Trademarks and trade names may be used in this document to refer to either the entities claiming the marks 
and names or their products. Specifications are correct at date of publication but are subject to availability or change without notice at any time. 
Dell and its affiliates cannot be responsible for errors or omissions in typography or photography. Dell’s Terms and Conditions of Sales and 
Service apply and are available on request. Dell service offerings do not affect consumer’s statutory rights. 
 
Dell, the DELL logo, and the DELL badge, PowerConnect, and PowerVault are trademarks of Dell Inc. 
 


