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Abstract

1.0  Introduction

This whitepaper describes the various factors affecting application performance using Mellanox 
QDR Infiniband interconnects in combination with Intel X5600-series-based platforms. The 
recommendations in this whitepaper are based on experience gained in operating a large HPC cluster at 
the University of Cambridge HPC Service. We demonstrate how application performance on Mellanox 
QDR can depend heavily on the choice of the MPI implementation and on the detailed configuration 
of the implementation, and we also show that no single MPI implementation is optimal for all 
applications. A methodology is given for comparing and selecting the optimal MPI implementation and 
the MPI configuration for a given application. We also demonstrate the magnitude of the performance 
change between MPI implementations and describe how to fine-tune Intel MPI in order to optimise 
performance. We also describe factors affecting performance on architectures having some element 
of Non-Uniform Memory Access (NUMA), which is a relatively new feature of the Intel 5600 system 
architecture. Unless an application is run in a certain way, NUMA-related issues may lead to suboptimal 
application performance. We also propose methods for optimising performance on these NUMA 
systems using features built into Intel MPI.

Application performance on platforms based on the Intel X5600-series processor and using Mellanox 
QDR Infiniband depends heavily on system configuration and runtime environment. In Section 2, we 
describe how to optimise MPI communications on Mellanox QDR Infiniband. In Section 3, we discuss 
the issues associated with running applications on Intel Westmere NUMA platforms. In Appendix A we 
describe how to integrate Intel MPI with the PBS (Torque) queuing system, although this mechanism is 
easily portable to other scheduling systems. In Appendix B we present a checklist of the recommended 
settings, and in Appendix C we present the reasons for creating a custom tuning utility for Intel MPI.
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2.0  Optimising MPI on Mellanox QDR Infiniband

In this section, we demonstrate how to optimise MPI communications, and we focus on Mellanox QDR 
Infiniband in particular. We present a methodology for comparing interconnects, MPI implementations 
and MPI configurations and selecting the optimal interconnect, MPI implementation and MPI 
configuration for a given application. The methodology is based on the IMB synthetic benchmark. 
Next, we demonstrate the correlation between IMB performance and the performance of a real-world 
HPC application. We also demonstrate the magnitude of difference between MPI implementations and 
MPI configurations on Mellanox QDR Infiniband. Finally, we describe how to further improve Intel MPI 
performance with fine-tuning.

We note that the most reliable method of finding the optimal interconnect, MPI implementation 
and MPI configuration for a given application is to simply test that application on every combination 
available. However, that methodology can be expensive in terms of man-hours and machine time. 

The MPI standard defines a number of calls that represent different communication patterns, such as 
Alltoall, Gather, Scatter, etc. Most of those calls accept a message as an argument and the message has 
a certain size, usually from 0 to a few megabytes. Some MPI implementations offer the choice of the 
algorithm for a given call, message size, node count, core count and processes per node (ppn) value. 
Different algorithms are optimal on different platforms.

The Intel MPI Benchmarks (IMB) tests the most important MPI calls by simply invoking each call 
using a given message size, node count, core count and ppn value and measuring the time it takes 
to complete the call. The test is invoked multiple times and the minimum, maximum and average 
timings are obtained. IMB reports the timings but does not interpret them. We are more interested in 
the throughput for a given message size rather than the actual timing. The throughput is given by the 
following formula: 
Throughput (bytes/second] = (message_size [bytes]/timing [microseconds])*1,000,000.

We propose the following methodology for choosing the optimal MPI system (i.e. interconnect, MPI 
implementation and MPI configuration) for a given application:
(1)	� obtain a profile of the application on a given test case, node count, core count and ppn value. 
The profile should contain the information on
•	 time spent in MPI calls, 
•	 MPI call type
•	 MPI call message size
(2)	�check the time spent in MPI communications. If it is small, it may be worthwhile to stop here and try 

optimising other aspects of the application rather than MPI communications.
(3)	�obtain IMB tests on the system in question. We recommend running IMB at least twice and choosing 

the better results, because random factors can sometimes slow individual timings down.  
When comparing different choices of the software environment, we recommend running the tests 
on exactly the same nodes in order to mitigate the impact of differences between individual nodes. 
The IMB results may already exist and be publically available so it may not be necessary to actually 
run them.

2.1	 Methodology: the IMB benchmark

2.1 .1	 Background
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(4)	�use a spreadsheet to calculate the throughput for each message size and plot the data on a chart. 
(5)	�compare the systems in question by looking at the IMB throughputs obtained on the MPI calls, 

message sizes, node counts, core counts and ppn values used by the application. The system with 
the best throughputs will often be the optimal choice for that application.

(6)	�if the application allows for configuring the message sizes that the application uses, look through the 
IMB throughputs for the peak value and configure the application accordingly. 

In correlating IMB performance to application performance, it is important to keep in mind that 
sometimes there is a tradeoff between achieving the best MPI performance vs CPU overhead. So it must 
be noted that we may not always be able to predict application performance based on IMB numbers.

In the following sections, we demonstrate how the above method works on a real-world HPC 
application. We also demonstrate the magnitude of the performance delta between various MPI 
implementations and MPI configurations.

The impact of the choice of the MPI implementation and MPI configuration can be observed on 
CASTEP[2] 5.0. It is an application used in material science and developed at the University of 
Cambridge. Profiling of CASTEP reveals that it spends much of its time in the Alltoallv call. A significant 
amount of time can also be spent in Scatter and Scatterv calls. Under the default settings, the greater 
the core count, the smaller the Alltoallv message sizes that CASTEP uses. CASTEP provides the user with 
a limited control of the message size used for the Alltoallv call using a special message_size parameter 
to CASTEP. 

Under the default message_size, every CASTEP process participates in the Alltoallv calls. When the 
message_size parameter to CASTEP is increased, fewer processes participate in Alltoallv and CASTEP 
handles communication with the remaining processes using gathering and scattering [1]. The message 
size used for Alltoallv is then greater.

The message_size parameter is in 16-byte units. However, the actual message sizes will not be exactly 
the configured one. For example, we have determined by profiling that setting the parameter to 128 
on 256 cores produces message sizes around 128*16=2kB, but not exactly. On the other hand, setting 
a message size of 32768 on 256 cores produces message sizes near 1MB and 2MB, even though 
32768*16=512K. Also, we have experimentally found that with the message_size parameter set to 
32768 on 256 cores, CASTEP uses exactly 16 processes for Alltoallv and the communication with the 
remaining ones is done though gathering and scattering.

We present the IMB results for the Alltoallv call on 64 cores and 8 processes per node across many 
message sizes. We compare OpenMPI, mvapich2 and Intel MPI. We also compare two different 
algorithms offered by Intel MPI. Algorithm 1 is the default in version 4.0.1, but algorithm 2 was the 
default in 4.0.0. Two algorithms are also offered by OpenMPI and the default is algorithm 1. mvapich2 
offers only one algorithm for Alltoallv. We have performed two series of tests: on ConnectX/2 cards and 
on a mixed environment of ConnectX/2 and the previous generation ConnectX cards.

Note also that we set the OpenMPIs mpi_leave_pinned parameter to 1, which is recommended for 
benchmarking.

2.2�	 Correlation between IMB and real-world application performance
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Mixed ConnectX and ConnectX/2, Mellanox QDR, MPI_Alltoallv, 64 cores, 8 processes per node

ConnectX/2, Mellanox QDR, MPI_Alltoallv, 64 cores, 8 processes per node

Figure 1: MPI_Alltoallv on 64 cores on Westmere, Mellanox QDR, mixed 
ConnectX and ConnectX/2.

Figure 2: MPI_Alltoallv on 64 cores on Westmere, Mellanox QDR, ConnectX/2.
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On the mixed ConnectX and ConnectX/2 variant, we can observe a massive difference between the MPI 
implementations on the Alltoallv call on small message sizes. The best variant, Intel MPI with the second 
algorithm (Plum’s algorithm), is about 40 times as fast on small message sizes than the next best variant: 
mvapich2. 

On ConnectX/2, Intel MPI with the Plum’s algorithm yields the same performance as on the mixed 
ConnectX and ConnectX/2 variant, whereas the other variants yield higher performance on small 
message sizes. However, Intel MPI with the Plum’s algorithm is still the fastest of them all. On small 
messages, it is about 10 times as fast as the next best MPI implementation: mvapich2.
 
Furthermore, we observe that there is a sweet spot in the Intel MPI Plum’s algorithm somewhere near 
the message size of 2kB.

In order to demonstrate the correlation between IMB results and application performance, let’s consider 
the mixed ConnectX and ConnectX/2 variant, because it shows a higher magnitude of difference 
between MPI implementations than the pure ConnectX/2 variant. We can predict that in order to obtain 
optimal CASTEP performance, one should use Intel MPI configured to use the Plum’s algorithm and 
one should configure CASTEP’s Alltoallv message size to around 2kB. In order to have CASTEP use that 
message size, we set the message_size parameter in CASTEP to 128 (because it is in 16-byte units). We 
also test CASTEP on Intel MPI with the default message size. If the user cannot use Intel MPI (because 
it is a commercial implementation), then either OpenMPI or mvapich2 may be the fastest, depending 
on the actual message sizes used by the application. However, the differences between OpenMPI and 
mvapich2 on Alltoallv are not as great as between Intel MPI and the other two. Furthermore, OpenMPI 
algo=2 should be slightly faster than algo=1, which is the default. For mvapich2 and OpenMPI, we 
test the default CASTEP message_size and also the message_size set to 32768 (on 256 cores, that 
corresponds to message sizes of 1MB and 2MB). On the following figure, we observe a high correlation 
of IMB results with CASTEP performance.
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Figure 3: Tuning CASTEP’s communications on Westmere/Mellanox QDR.
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Firstly, the above results show that the performance delta between MPI implementations and MPI 
configurations is as high as 500%. 

Secondly, let’s consider the results with the default message size. When the default message size is 
used, all processes participate in Alltoallv in CASTEP. We have established by profiling that on 128 
cores, CASTEP uses the message size of about 2kB by default. On 64 cores, the message size is larger 
and on 256 it is smaller. We observe that on all three core counts, 64, 128 and 256, the slowest result 
is OpenMPI algo=1, mvapich2 is in the middle and the fastest Intel MPI algo=2.  That is consistent 
with IMB results. The greatest difference between the MPI implementations and MPI configurations is 
observed on 128 cores, that is when the message size is 2kB. That shows a strong correlation with IMB 
results: message size of 2kB corresponds to the sweet spot in Intel MPI performance.

Furthermore, we observe that we can significantly improve Intel MPI performance on 256 cores by 
explicitly setting the CASTEP message size to 2kB (message_size=128). That also shows a strong 
correlation with IMB results.

However, on increasing message size with OpenMPI and mvapich2, the correlation with the IMB 
results obtained on 64 cores is weak. mvapich2 performs significantly faster than OpenMPI algo=1 and 
OpenMPI algo=2 performs slightly slower than OpenMPI. That is not consistent with IMB results on 64 
cores, but that is not a surprise, because, as explained earlier, in this case CASTEP uses 16 processes for 
Alltoallv with some arbitrary topology and the remaining communication is done through gathering and 
scattering. The optimal algorithm for Alltoallv for that core count and topology is not necessarily the 
same one as for 64 cores done for the IMB test, so the IMB test on 64 cores is not reliable in this case. 
Furthermore, with increased message size, a significant part of the run time is spent in gathering and 
scattering MPI calls and their performance also has an impact on CASTEP performance. 

In summary, IMB can be a useful tool for predicting application performance, but since it only tests a 
small set of variables that application performance depends on, it has limitations in applicability.

It is virtually impossible to present a comprehensive comparison of MPI implementations because of the 
large number of variables that affect MPI performance. The performance of every MPI implementation 
depends on the node count, core count, ppn value, MPI call, message size, the configuration of that 
implementation and, of course, the underlying hardware. Furthermore, the performance of an MPI 
implementation changes with the version of the software. 

As a result, the most reasonable approach is to compare MPI implementations for given job profiles. We 
will now demonstrate a methodology for comparing the implementations across multiple MPI calls. The 
user can apply the same methodology to compare MPI implementations in his environment in order to 
choose the fastest implementation for his job profiles.

We also needed to pick a single MPI implementation as the default one for the Westmere/Mellanox QDR 
cluster at the University of Cambridge. We have chosen Intel MPI. There were the following reasons for 
doing so:

•	� As we have shown on Figure 1, Intel MPI 4.0.1 offers significantly higher performance on the Alltoallv 
call on small messages than OpenMPI 1.4.2 and mvapich2 1.5. Alltoallv performance on small 
message sizes is very important for the application CASTEP, which is commonly used at the cluster at 
the University of Cambridge. 

•	�� There is commercial support for Intel MPI.

2.3	 MPI Implementations
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We have also focused our integration, configuration and tuning activities on the same MPI 
implementation.

Nonetheless, we will now demonstrate the methodology for comparing MPI implementations across 
multiple MPI calls. The following considerations assume the core count of 96, node count of 8, ppn 
value of 12 and two different message sizes: a small one, 32 bytes, and a large one, 1 megabyte. 
We will use Intel MPI 4.0.1, OpenMPI 1.4.2 and mvapich2 1.5. 

We will also compare a default version of Intel MPI and a version with tuned MPI algorithms. 
The tuning procedure is described later in the document. Due to limited time, we have decided to tune 
only the MPI implementation chosen as the default. We note that means that OpenMPI and mvapich2 
performance can potentially be improved through tuning. We also note that there are other tuneable 
variables in Intel MPI that we did not consider. That means that Intel MPI performance can also be 
potentially improved. Nonetheless, comparing the default configuration of the MPI implementations is 
a good starting point. The comparison will also demonstrate the magnitude of difference between the 
MPI implementations and MPI configurations.

The methodology of comparing MPI implementations is based on the Kiviat diagram, also known as the 
radar chart. The diagram allows for comparing the implementations against several criteria at once. 
We will now explain how to read the diagram. It consists of spokes extending from the centre. 
Each spoke corresponds to one of the variables. A point on the spoke corresponds to a value of the 
variable. The points corresponding to the same MPI implementation are connected with lines. The 
further away the lines are from the centre of the graph, the better. 

Figure 4: MPI implementations using a small message size: 32 bytes. The jobs used 96 cores, 
8 node, 12 processes per node. The hardware was Mellanox QDR ConnectX/2.
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Figure 5: MPI implementations using a large message size: 1MB. The jobs used 96 cores, 8 node, 12 
processes per node. The hardware was Mellanox QDR ConnectX/2

Our observations confirm that no single MPI implementation offers the highest performance on all MPI 
calls. Nevertheless, on the tested parameters, Intel MPI 4.0.1 offers the highest performance on most of 
the calls. That confirms that it is a reasonable choice for the default implementation. 

We also observe that tuning of Intel MPI 4.0.1 makes the greatest difference on the Alltoallv call on small 
message sizes.

However, as explained earlier, one should always attempt to find the optimal MPI implementation and 
MPI configuration for the specific environment and parameters required by a given job. 

MPI implementations can be tuned, which can significantly improve performance. There are a wide 
variety of variables that can be tuned. One of the aspects that can be tuned is the choice of algorithm 
for each MPI call, message size, node count, core count and ppn value. We have found that the choice 
of algorithm can make a significant difference on Intel MPI running on Mellanox QDR. By default, Intel 
MPI uses various heuristics to choose the algorithms, but it is better to determine them experimentally. 
In this section, we will describe how to do that.

In Intel MPI, the choice of algorithms for a call can be specified using I_MPI_ADJUST_XXX environment 
variables, where XXX is the name of the MPI function. For example, for the Alltoall call, the variable is 
I_MPI_ADJUST_ALLTOALL. The algorithm can be configured in one of the following ways:

2.4	 Tuning MPI algorithms in Intel MPI
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1.	� I_MPI_ADJUST_XXX=2 
Use algorithm 2.

2.	� I_MPI_ADJUST_XXX=’2@36’ 
Using algorithm 2 on the core count of 36.

3.	� I_MPI_ADJUST_XXX=’1:0-599;3:600-4194304’ 
Use algorithm 1 on message sizes 0-599 and algorithm 3 on message sizes 600-4194304.

4.	� I_MPI_ADJUST_XXX=’1:0-599@36;4:600-4194304@36’ 
Use algorithm 1 on message sizes 0-599 and core count of 36 and algorithm 4 of message sizes  
600-4194304 and core count of 36.

The following variables can be configured using all four methods:

I_MPI_ADJUST_BCAST
I_MPI_ADJUST_GATHER
I_MPI_ADJUST_ALLGATHER
I_MPI_ADJUST_ALLGATHERV
I_MPI_ADJUST_SCATTER
I_MPI_ADJUST_REDUCE
I_MPI_ADJUST_ALLREDUCE
I_MPI_ADJUST_REDUCE_SCATTER
I_MPI_ADJUST_ALLTOALL

The following variables can be configured only using the first two methods, because the call does not 
accept a message as argument:

I_MPI_ADJUST_BARRIER

The following variables can be configured only using the first two methods because of a limitation in 
the MPI library:

I_MPI_ADJUST_GATHERV
I_MPI_ADJUST_SCATTERV
I_MPI_ADJUST_ALLTOALLV

The algorithm choices obtained using the methodology described in this section are intended to 
be optimal for most applications. However, a different selection of algorithms may still yield higher 
performance on a minority of applications. For example, as we could see above, the Gatherv, Scatterv and 
Alltoallv calls cannot be configured per message size but rather a single algorithm has to be selected for 
all message sizes at once. As a result, the optimal choice will depend on the message sizes used by the 
application. Nonetheless, the methodology presented in this section obtains reasonable defaults.
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There is a tool called mpitune in Intel MPI that, among other uses, can establish optimal default algorithms 
for MPI calls. However, we have created our own tuning utility, the reasons for which are quite complex 
and are described in Appendix C. In short, we have made different design decisions to those made by the 
authors of Intel MPI. Our utility produces different tuning data to the original mpitune. The utility is called 
yampitune (Yet Another mpitune) and can be downloaded from http://www.hpc.cam.ac.uk/download/ 
The tool is intended to be used only with Intel MPI 4.0.1. 
yampitune produces tuning data for the most important MPI calls across a variety of message sizes on 
a given combination of the number of nodes (NN), number of processes (NP) and processes per node 
(PPN). Intel MPI will then pick the tuning data that matches the NN, NP and PPN parameters of the job. 
Ideally, you should obtain the optimal configuration for as many combinations of NN, NP and PPN as 
possible, starting with the most popular ones among your users. They will usually be multiples of fully 
populated nodes or core counts that are powers of two.
To use the tool, run it as follows:

yampitune NN NP PPN
where:

NN: number of nodes
NP: number of cores
PPN: processes per node

You should run every combination of NN, PPN and NP in a separate directory. The script will produce a 
number of files, the most important of which will be mpiexec_FABRIC_nn_NN_np_NP_ppn_PPN.conf. 
Copy that file to the $INTEL_MPI_HOME/etc.

Intel MPI will pick up the tuning data if the -tune parameter is passed to mpirun:

mpirun -tune -ppn $PPN -np $NP <application> [options]

As a final note, we have noticed that Intel MPI version 4.0.1 always uses an inferior algorithm for Alltoallv 
on Mellanox QDR. For that reason, we suggest adding the following to the default environment:

I_MPI_ADJUST_ALLTOALLV=2

The above will ensure that the optimal algorithm will be used even if an 
mpiexec_FABRIC_nn_NN_np_NP_ppn_PPN.conf file is not available for a given combination of 
NN, NP and PPN.
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3.0  Optimising applications on Intel Westmere NUMA platforms

NUMA stands for Non-Uniform Memory Access. It means that computer memory is divided into memory 
nodes and a given CPU core can access a given memory node faster than another memory node. The 
servers operated by the University of Cambridge HPC Service are dual-socket, hex-core Westmere 
machines. The architecture is illustrated on Figure 6. They have two memory nodes, one for each CPU 
socket. They also have three levels of cache: L1 (32 kB), L2 (256kB) and L3 (12 MB). There are twelve L1 
and L2 caches, each one exclusive to a core. However, there are only two L3 caches, each one shared 
between cores located on the same socket.

The non-uniform architecture poses the following challenges to optimisation:
•	 �For a given process, as much memory as possible should be allocated on the local memory node. 
That requires proper OS kernel configuration and managing the placement of each process on a socket.
•	 Application performance may depend on the pattern of placing processes or threads on sockets. 
	 —	� On the one hand, for some applications, keeping certain processes on the same socket may yield 

optimal performance because the sharing of resources may be beneficial. For example, the shared 
L3 cache may improve inter-process communication. On the other hand, for other applications 
or other processes of the same application, doing the opposite, that is keeping the processes 
on different sockets, may be optimal, because the resources available to each process are then 
maximised. For example, it may be beneficial to have maximal memory bandwidth, interconnect 
bandwidth and cache size available to each process.  In order to obtain optimal performance from 
a given application, it is usually best to experimentally determine the optimal process placement 
pattern. 

	 —	� In case of multi-threaded applications, we recommend keeping threads on the same socket by 
default, because threads share the same heap and it is beneficial to keep the heap on the local 
memory node. However, it is still possible that for some applications performance will be higher 
when threads are spread between sockets.

	 —	� When a node is under-populated, that is when there are fewer processes or threads running on it 
than there are cores, the process placement pattern can make a particularly strong difference on 
performance. We recommend paying special attention to process and thread placement when the 
node is under-populated. 

The above challenges will be examined in more detail further in this document, solutions to the most 
common problems will be proposed and benchmark results will be presented.

Figure 6: NUMA architecture of Intel Westmere
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3.1 	 Memory locality

Memory should be allocated on the local memory node whenever possible. The configuration of the 
kernel has a major impact on how memory is allocated. For example, under the default configuration in 
Scientific Linux 5.5, the kernel will allocate memory on a distant node if the local memory node is full with 
dirty filesystem caches. 

Memory allocation behaviour of the kernel is configured using the vm.zone_reclaim_mode sysctl. 
The value should be the result of the OR operation of the following:

1	 = Zone reclaim on
2	 = Zone reclaim writes dirty pages out
4	 = Zone reclaim swaps pages

We recommend setting vm.zone_reclaim_mode=3 (reclaim on and write dirty pages out). The default in 
Scientific Linux 5.5 is the value of 0. We will later demonstrate the impact of changing mode 0 to mode 3 
on a performance test.

We also note that in order to let the OS allocate memory on the local memory node, it is necessary to 
pin processes to cores. Note that it is not necessary to pin a process to a memory node (even though 
it is possible to do that in Linux). That is because with the kernel configured as above, memory will be 
allocated from the local memory node automatically, whenever possible.

For multi-threaded applications, it is necessary to pin processes to more than one core. That way each 
thread will run on its own core. If a process is pinned to more than 1 core, the set of cores to which it is 
pinned is called a domain. For example, there may be two MPI processes on a Westmere node, each with 
a 6-core domain, consisting of cores of a given socket.

As a side note, even if Westmere nodes were not NUMA, pinning processes to cores could still improve 
performance, because it prevents process migration, which in turn disrupts L1 and L2 cache utilisation.

Intel MPI can pin processes to cores and we recommend taking advantage of that functionality. We will 
describe later how to use it, and discuss the pros and cons in more detail. 

We have measured the impact of setting vm.zone_reclaim_mode to 3 as compared to the value of 0. 
When filesystem caches are empty, the two settings yield the same performance. However, we have 
created a test that simulates an unfavourable scenario. In the test, we first run rsync for a considerable 
period of time in order to fill in the filesystem caches on both memory nodes. We then run a single-core, 
memory-hungry benchmark (StarSTREAM_Copy) on one of the sockets. The filesystem caches on the 
memory node local to that socket are then released. Next we run the single-core benchmark on the other 
socket, and we see a considerable difference between mode 3 and 0. In mode 0, the kernel allocates 
memory from the distant memory node because local memory is used by filesystem caches, and the 
distant memory is available. In mode 3, the kernel releases the filesystem caches on the local memory 
node and allocates the process memory locally.

As a comparison, we have also measured the performance of StarSTREAM_Copy under the most 
unfavourable scenario that is when all memory for each process is allocated on the distant memory node. 
We obtained that result by pinning each process to a core and pinning the memory of each process to its 
remote memory node. That scenario may occur when a user manages pinning improperly.
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The results are shown in Figure 7.

3.2	 Process and thread placement: impact on performance	

We can observe that the performance delta between mode 0 and mode 3 in an unfavourable scenario 
can be as high as 25%. Furthermore, the performance delta between the most local and most remote 
memory placement is more than 40%. 

We will present benchmark results that illustrate the impact of process placement pattern on 
performance. We have found that process placement makes the greatest difference when a node is 
under-populated. For that reason, we will demonstrate the impact of process placement on under-
populated nodes. 

We note that there could be many reasons for nodes being under-populated:
•	 ��An application supports only specific core counts, which are not multiples of the total number of cores 

in a node. That can often be the case on Westmere servers with 12 cores per node.
•	 �Memory constraints
•	 �Licensing cost: a license may be charged per core, but using ppn=12 may be only a little faster than 

ppn=10, meaning that using ppn=10 is more cost-efficient
•	 �Benchmarking rules

We will use SENGA to demonstrate the impact of the process placement pattern on performance. 
SENGA is a commonly used HPC code developed at the University of Cambridge.

Figure 7: Impact of memory locality on StarSTREAM_Copy
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The tests have been obtained on a dual-socket, hexa-core Westmere node. The process count was 8. 
We have tested two process placement patterns: 

•	 ��The scatter method, which means spreading the processes equally between sockets. 
•	 ��The bunch method, which means aggregating the processes on as few sockets as possible. 

The scatter method yields 50% higher performance than the bunch pattern on SENGA. In conclusion, it is 
important to determine the optimal process placement pattern for a given application in order to obtain 
optimal performance. Occasionally where applications widely benefit from under-subscription, it may be 
worthwhile considering turning off cores in the BIOS to save power and simplify process scheduling.

Before we describe how to control process placement, we draw attention to the problem of CPU core 
numbering. When creating custom pinning configurations, it is important to determine the CPU core 
numbering scheme on a given server. Different servers use different numbering schemes. For example, 
on some servers cores 1,3,5,7,9,11 are located on socket 0 and cores 0,2,4,6,8,10 on socket 1. On other 
servers, cores 0,1,2,3,4,5 are located on socket 0 and 6,7,8,9,10,11 on socket 1. Other combinations are 
possible as well. A useful tool for determining the numbering is cpuinfo from the Intel MPI package. 

Figure 8: Impact of the pinning pattern on SENGA.

3.3	 Issue of core numbering when managing process placement
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Below is the output from a Westmere server:

Intel(R) Xeon(R)  Processor (Intel64) 
=====  Processor composition  ===== 
Processors(CPUs)  : 12 
Packages(sockets) : 2 
Cores per package : 6 
Threads per core  : 1 
=====  Processor identification  ===== 
Processor	 Thread Id.	 Core Id.	Package Id. 
0       	 0   		  0   		  1   

1       	 0   		  0   		  0   

2       	 0   		  1   		  1   

3       	 0   		  1   		  0   

4       	 0   		  2   		  1   

5       	 0   		  2   		  0   

6       	 0   		  8   		  1   

7       	 0   		  8   		  0   

8       	 0   		  9   		  1   

9       	 0   		  9   		  0   

10      	 0   		  10  		  1   

11      	 0   		  10  		  0   

=====  Placement on packages  ===== 
Package Id.	 Core Id.	Processors 
1   		 0,1,2,8,9,10		  0,2,4,6,8,10 
0   		 0,1,2,8,9,10		  1,3,5,7,9,11 
=====  Cache sharing  ===== 
Cache	 Size		  Processors 
L1	 32  KB		  no sharing 
L2	256 KB		  no sharing 
L3	12  MB		  (0,2,4,6,8,10)(1,3,5,7,9,11) 

The above output describes the Westmere NUMA architecture with two processor sockets. 
Cores 0,2,4,6,8,10 are located on socket 1 and cores 1,3,5,7,9,11 are located on socket 0.

We will now describe how to manage process placement within NUMA nodes using the process pinning 
mechanism in Intel MPI. We will describe the default pinning pattern in Intel MPI, and then describe how 
to create custom patterns. 

There are two methods to pin processes to cores: by the mpd (multi-purpose daemon) or within the 
MPI library. It is necessary to use the mpd method in order to give the kernel a chance to allocate all 
memory of the process on the local memory node. That is not the default setting in version 4.0.1, so we 
recommend using the following environment variable:

I_MPI_PIN_MODE=mpd

3.4	 Basics of controlling process placement in Intel MPI
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The two most important variables for controlling process pinning in Intel MPI are I_MPI_PIN_
PROCESSOR_LIST and I_MPI_PIN_DOMAIN. For more information about how to use the variables, see 
the Intel MPI reference manual. However, the following defaults will work for most applications.
The default process pinning pattern in Intel MPI 4.0.1 is I_MPI_PIN_DOMAIN=auto. Under that setting, 
Intel MPI creates as many domains as there are processes on a node and the size of each domain is 
obtained by dividing the number of cores by the number of processes. Since we do not know if processes 
spawn any threads, we recommend that setting as a reasonable default. Also, under that setting, processes 
will be scattered between sockets. The scatter pattern is a reasonable default, but some applications 
prefer the bunch pattern.

Alternatively, when all multi-threaded applications running on the cluster are OpenMP applications, a 
reasonable default is I_MPI_PIN_DOMAIN=omp. The domain size is then set to the value of the 
OMP_NUM_THREADS environment variable. The OMP_NUM_THREADS variable defines the number of 
threads per process in OpenMP applications.

In the following table, we describe in more detail how I_MPI_PIN_DOMAIN=auto works on 12-core 
Westmere nodes.

When the above defaults are not optimal, they can be reconfigured using  
I_MPI_PIN_PROCESSOR_LIST or I_MPI_PIN_DOMAIN. 
To have the MPI implementation report the pinning information (and some other useful information) use:

I_MPI_DEBUG=5

Number of processes Default pinning pattern on a 12-core Westmere in Intel MPI

12
The first 6 ranks are pinned to consecutive cores on socket 0, then to 
consecutive cores on socket 1.

11-7

Ranks are scattered evenly between the sockets. The first half of the ranks is 
pinned to consecutive cores on socket 0 and the rest to consecutive cores on 
socket 1. The scatter pattern is a reasonable default, but some applications prefer 
the bunch pattern.

6-5

Processes are scattered evenly between sockets and each process is pinned to a 
two-core domain, where both cores are located on the same socket. 
The above pattern is primarily intended for the scenario when each process 
spawns 2 threads. Each thread can then run on a separate core.
If a process does not spawn extra threads, the pinning pattern is also fine but not 
optimal. On the one hand, it is good, because the two cores are located on the 
same socket, so even if the process migrates between the two cores, memory 
access will still be to the local NUMA node. 
On the other hand, it would be better to pin each process to a single core, 
because process migration upsets L1 and L2 cache usage.
Nonetheless, if we do not know in advance whether processes spawn threads, 
we recommend this pinning pattern as a reasonable default. 
Also, this pattern scatters the processes evenly between sockets, which is a 
reasonable default, but some applications prefer the bunch pattern.

4

Processes are scattered evenly between sockets and each process is pinned to a 
three-core domain located on one socket. 
For the same reasons as for 6 cores, we recommend this pinning pattern as a 
reasonable default.

3

Processes are scattered evenly between sockets and each process is pinned to a 
four-core domain located on one socket. 
For the same reasons as for 6 cores, we recommend this pinning pattern as a 
reasonable default.

2

Processes are scattered evenly between sockets and each process is pinned to a 
six-core domain located on one socket. 
For the same reasons as for 6 cores, we recommend this pinning pattern as a 
reasonable default.

1
No pinning is done. This is reasonable if we do not know if the process will 
spawn any threads.
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3.5	� Process placement in Intel MPI when a node is shared by 
multiple jobs

At the cluster at the University of Cambridge HPCS, we do not allow the queuing system to schedule 
multiple jobs on one node. However, a user may aggregate multiple independent programmes into a 
single job script. When multiple independent programmes are aggregated into a single job, we call each 
such independent programme a joblet. 
With Intel MPI, a joblet corresponds to an instance of mpiexec. Unfortunately, when a node is shared by 
multiple instances of mpiexec, the pinning mechanism in Intel MPI 4.0.1 does not always work properly. 
For example, under some circumstances, Intel MPI may pin multiple processes to the same core. It is 
therefore necessary to override the default pinning configuration when a node is shared by multiple 
instances of mpiexec. Unfortunately, in some edge cases, the required pinning configuration is quite 
complex.
Fortunately, our experience of running the cluster at the University of Cambridge tells us that the most 
common case of node sharing is a single-node job, where each joblet consists of the same number 
of processes. We have created a joblets script that manages process pinning in that case. The process 
placement pattern used by the script is to scatter processes evenly between sockets. 
The joblets script interfaces with the PBS queuing system. It should be invoked as below:

export NUM_JOBLETS=N # number of joblets (customise this)
export NP_PER_JOBLET=K # number of processes per joblet (customise this)
joblets <application> [options]

The joblets script defines a unique JOBLET_ID variable for each joblet. Based on the JOBLET_ID, the 
user can implement a logic that runs a different application in each joblet. For example, if there are three 
joblets, the <application> in the above example can be a script similar to the following:

#!/bin/bash
if [[ “$JOBLET_ID” -eq “1” ]]
then
  cd directory1
  exec ./app1 options1
elif [[ “$JOBLET_ID” -eq “2” ]]
then
  cd directory2
  exec ./app2 options2
elif [[ “$JOBLET_ID” -eq “3” ]]
then
  cd directory3
  exec ./app3 options3
fi

The joblets script can also be used for non-MPI, serial, single-core jobs. Although it is not necessary to 
run such jobs under Intel MPI, we are of the opinion that it is better to use a uniform start-up and pinning 
mechanism for serial and parallel jobs.
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When the user wants to submit multiple single-node jobs, each one consisting of multiple joblets, the 
PBS job array functionality can be used to extend the joblets functionality. In a job array, each job uses the 
same job script, but PBS will define a different value of the PBS_ARRAYID variable in each job. When each 
such job consists of multiple joblets, individual joblets can be identified by the JOBLET_ID variable. 
The <application> can then be a script similar to the following:

#!/bin/bash
if [[ “$PBS_ARRAYID” -eq “1” ]] && [[ “$JOBLET_ID” -eq “1” ]]
then
  cd directory1
  exec ./app1 options1
elif [[ “$PBS_ARRAYID” -eq “1” ]] && [[ “$JOBLET_ID” -eq “2” ]]
then
  cd directory2
  exec ./app2 options2
elif [[ “$PBS_ARRAYID” -eq “2” ]] && [[ “$JOBLET_ID” -eq “1” ]]
then
  cd directory3
  exec ./app3 options3
elif [[ “$PBS_ARRAYID” -eq “2” ]] && [[ “$JOBLET_ID” -eq “2” ]]
then
  cd directory4
  exec ./app4 options4
fi

More information on using PBS job arrays can be found at 
<http://www.clusterresources.com/torquedocs/2.1jobsubmission.shtml#jobarray>
The joblets script can be downloaded from http://www.hpc.cam.ac.uk/download/.
In other cases of node sharing, we recommend either creating the pinning configuration manually or 
disabling pinning entirely. To disable pinning entirely, use the following:

I_MPI_PIN=0



4.0  Summary

Appendix A	 Integrating Intel MPI with PBS

We have shown that the choice of the MPI implementation and MPI configuration can improve the 
performance of a synthetic benchmark by a factor of 40. We have also shown that on a real-world 
application, the performance delta between various choices of MPI implementation, MPI configuration 
and application’s MPI-related parameters can be as high as 500%.

Furthermore, we have shown that on a Westmere NUMA system, tuning the kernel configuration on a 
popular Linux distribution can improve performance by 25% on a synthetic benchmark, due to better 
memory locality. We have also shown that the most favourable memory locality is 40% faster than the 
most unfavourable locality on that benchmark. Moreover, we have shown that the performance delta 
between different process placement patterns on a NUMA system can be as high as 50% on a real-world 
application.

Finally, we have made recommendations on optimal configuration choices on Mellanox QDR and Intel 
Westmere platforms. Further information on benchmarking and tuning is available widely and the authors 
note further best practice information and profiling details are available at the HPC Advisory Council [3].

We will describe issues associated with integrating Intel MPI with PBS/Torque.
Firstly, the TM interface of PBS should ideally be used to start processes on remote nodes. That allows the 
PBS to do full accounting of jobs. It also does not require ssh access between the nodes.
We have evaluated the third-party mpiexec tool from the Ohio Supercomputing Centre (OSC). It has 
some useful features, such as tight integration with PBS or easy aggregation of multiple independent jobs 
into one job script. However, we have rejected that option for a number of reasons:
•	 ��We have found that the latest version of OSC mpiexec, 0.84, does not work with the latest version of 

the Intel MPI library: 4.0.1. 
•	 ��We have found that when Intel MPI 4.0.0 is started with the OSC mpiexec 0.84, the performance of 

the PingPong IMB test on the 128K message size is significantly lower: 3.3GBps instead of 7.63GBps.  
Apparently the choice of the start-up method affects the performance of MPI communications in  
Intel MPI. 

•	 ��OSC mpiexec is a third-party tool that is not officially supported by the vendor of the MPI 
implementation.

For the above reasons, we prefer to use the native start-up method in Intel MPI. We have integrated Intel 
MPI with PBS as follows. 
PBS provides the pbsdsh tool that allows starting a programme on remote nodes. A wrapper around 
pbsdsh is needed to simulate the ssh interface. The wrapper removes all the ssh switches and extracts the 
hostname from the fully qualified domain name:

pbsdsh_intelmpi_wrapper:
#!/bin/bash 

. /etc/profile.d/modules.sh 
module load torque 

while [[ “${1:0:1}” == “-” ]] 
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MY_FQDN=”$1” 
shift 

IFS_OLD=”$IFS” 
IFS=”.” 
HOST_ARR=( $MY_FQDN ) 
IFS=”$IFS_OLD” 

exec pbsdsh -o -h “${HOST_ARR[0]}” “$@” 

Intel MPI can be configured to use the wrapper using the following environment variable:
I_MPI_MPD_RSH=pbsdsh_intelmpi_wrapper

The wrapper can be placed anywhere in the path, for example in the $INTELMPI_HOME/bin64 
directory. 

Our experience with the above wrapper has been positive most of the time, but we have occasionally 
seen the start-up procedure fail. If the above start-up method is found to exhibit problems, it is also 
possible to bypass the TM interface and use ssh to start processes. In that case, use:

I_MPI_MPD_RSH=ssh

We also recommend using the following commands to start the job. The first two lines extract the core 
count and ppn values from the PBS nodefile and the last line invokes Intel MPI. The -tune option to 
mpirun enables tuning, which is described elsewhere in this document.

export np=$(cat $PBS_NODEFILE | wc -l) 

export ppn=$(uniq -c “$PBS_NODEFILE” | head --lines=1 | sed -e ‘s/^ *\([0-9]\+\) .*$/\1/g’) 

mpirun -tune -ppn $ppn -np $np <application> [options]
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Appendix B	 Checklist of recommended settings

This section contains a checklist of recommended settings discussed in this whitepaper. It also contains 
some minor recommendations that are not described elsewhere in the document.

ü	� sysctl vm.zone_reclaim_mode=3
Ensures memory locality by writing out dirty pages when necessary.

ü	� I_MPI_PIN_MODE=mpd
Allows the memory to be collocated with the core. That is possible due to pinning at the level of the 
MPD daemon rather than the MPI library.

ü	� I_MPI_FABRICS=shm:dapl
Both shm:ofa and shm:dapl can be used, but we have tested shm:dapl extensively.

ü	� I_MPI_DAPL_PROVIDER=ofa-v2-mlx4_0-1
Various DAPL providers can be used, each with its own pros and cons: see the OFED DAPL release 
notes for details. We have chosen ofa-v2-mlx4_0-1, because it is fairly new but also well tested, and 
it scales well.

ü	� I_MPI_FALLBACK=disable
This ensures that a fallback interconnect, like Ethernet, is not used when Infiniband is down.

ü	� I_MPI_JOB_STARTUP_TIMEOUT=60
The increased timeout prevents occasional failures during start-up.

ü	� I_MPI_MPD_RSH=pbsdsh_intelmpi_wrapper
The above ensures tight integration between the PBS/Torque resource manager and Intel MPI.

ü	� I_MPI_ADJUST_ALLTOALLV=2
Enables the optimal algorithm for Alltoallv in Intel MPI version 4.0.1

ü	� Tuning data files should be generated and located in $INTELMPI_HOME/etc. The mpirun script 
should be invoked with the -tune switch.

ü	 Users need access to example job scripts as described in this document

B.1	 Linux Kernel 2.6.18

B.2	 Intel MPI 4.0.1



ü	� DAPL_ACK_RETRY=7 
ü	� DAPL_ACK_TIMER=20 

Important variables that prevent occasional job failures with error code 12 (timeout) on large clusters, 
that is, having 512+ cores (source: OFED 1.5.1 DAPL release notes). The errors that the above variables 
prevent look similar to the following:

node-i06:31dd: DTO completion ERR: status 12, op OP_RDMA_WRITE, vendor_err 0x81 - 10.143.9.7

[504:node-i06.storage.cluster][../../dapl_module_poll.c:3972] Intel MPI fatal error: ofa-v2-mlx4_0-1 DTO operation posted for 

[503:node-i07.storage.cluster] completed with error. status=0x8. cookie=0x0

Assertion failed in file ../../dapl_module_poll.c at line 3973: 0

internal ABORT - process 504

ü	� DAPL_CM_ROUTE_TIMEOUT_MS 20000 
ü	� DAPL_CM_ARP_TIMEOUT_MS 10000 
ü	� DAPL_UCM_REP_TIME 800 
ü	� DAPL_UCM_RTU_TIME 400 
ü	� DAPL_UCM_RETRY 15 

The above variables prevent job failures with error code 12 when the user changes the DAPL provider 
from ofa-v2-mlx4_0-1 to another one.

On a Westmere/Mellanox QDR system on 24 cores, mpitune makes the decision to pick algorithm 1 for 
Alltoallv. However, algorithm 2 is 100% faster than algorithm 1 on small messages, whereas algorithm 1 
is 20-40% faster than algorithm 2 on large messages. We prefer to have algorithm 2 as default.

Alltoallv, just like Gatherv and Scatterv, cannot have the algorithm configured per message size but 
rather a single algorithm is chosen for all message sizes. We suspect that the way mpitune makes the 
decision is that it adds up all the timings and picks the algorithm with the smaller sum. However, the 
problem with that method is that for small messages the timings are very small and for large messages 
the timings are much larger. As a theoretical example, for 32 bytes it may be 60 microseconds and for 
4 megabytes it may be 600,000 microseconds. When the numbers are added up, the timings on small 
message sizes have a very small impact on the sum.

This appendix describes the reasons we have created the yampitune utility and use it instead of the 
mpitune utility from Intel MPI 4.0.1.007. However, the issues have been reported to Intel and may be 
solved in future versions of Intel MPI.

B.3	 OFED-1.5.1-mlnx9

C.1	 Tuning Alltoallv, Gatherv and Scatterv

Appendix C	� Reasons for creating unofficial Intel MPI tuning  
utility: yampitune
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Instead of adding up the timings, we use another method in yampitune. We normalise the timings 
first. We take the largest message size in the set, in this case 4MB. Then we multiply each timing by 
the division of the maximum message size and the message size of that timing. For example, for the 
message size of 32 bytes, we multiply the timing by 4 megabytes divided by 32 bytes:
60 * 4M / 32 = 7864320.

For the message size of 4 megabytes, we multiply the timing by 4 megabytes divided by 4 megabytes:

600,000 * 4M / 4M = 600,000.

Then we add up the results. The algorithm with the smaller sum of normalised timings can then be 
chosen as the default.

Using the above method can make a big improvement on the performance of codes that send a lot 
of small messages using the Alltoallv call (up to 100%), but codes that use large message sizes will be 
slower by only up to 20-40%.

mpitune produces configuration strings as below:
I_MPI_ADJUST_XXX=’2:0-123;3:123-4194304’

Let’s assume the above output has been generated for 24 processes: 2 nodes, ppn of 12. If a given 
application uses the same node count and ppn values and the -tune switch to mpirun is used, the MPI 
implementation will pick the configuration file with the above configuration string.

However, there is a problem in that a given application running on 24 cores may internally have “islands” 
of communication that use, for example, 8 cores. The above configuration string will not necessarily be 
optimal for MPI calls within a 24-core application that use core counts smaller than 24. Furthermore, 
an island of 8 cores may have varying topology: for example, it may be spread equally over both nodes 
or collocated on one node. The topology probably also has an influence on the optimal choice of 
algorithm.

For the above reasons, we have decided that yampitune should leave the default heuristics for 
core counts smaller than the one declared by the application. In order to do that, the create the 
configuration string as follows:
I_MPI_ADJUST_XXX=’2:0-123@24;3:123-4194304@24’

mpitune does not produce verbose logs and does not allow for detailed analysis of the impact of tuning 
on performance. yampitune allows for comparing the original and tuned values by producing a file with 
the original timings and tuned timings. The timings can be compared using the following:

diff -u 10 algo_0_nn_NN_np_NP_ppn_PPN.imb algo_X_nn_NN_np_NP_ppn_PPN.imb
NN is the node count, NP the process count and PPN the number of process per node.

C.2	 Core counts

C.3	 Verbose logging
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