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In this whitepaper, we describe the installation, configuration and commissioning of a GPU cluster, 
integrated as a computational unit within a larger HPC production environment. Various issues are 
addressed covering scheduling, health monitoring, affinity and security. 

A. Abstract

In 2009, Cambridge received CUDA Centre of Excellence status from NVIDIA and the funding to build 
a large Tesla-based GPU cluster. The new GPU extension was integrated within the existing services, 
complete with connections to the 10Gbit/s ethernet and QDR Infiniband networks, and access to the 
Lustre storage under the control of the scheduling system: Moab/Torque. The new GPU computational 
unit provides a theoretical peak performance of 120 Tflop/s in single precision (1 Tflop/s double 
precision) from the GPUs alone, in addition to the 2.7 Tflop/s peak provided by the Nehalem CPUs 
within the servers.  

While the hardware that has resulted in this paper is not current generation (described in full in the 
appendix), the guidance and experience offered in this paper still applies to later 2050/2070 NVidia 
units. These current generation systems, based on the Dell PowerEdge C6100 host system and the 
PowerEdge C410x GPU unit, are now under evaluation in Cambridge and are to be reviewed in a 
supplementary technical bulletin later this year. The GPU computational unit used in this document is  
a subsystem of a much larger “Darwin” HPC system for researchers at the University of Cambridge and  
is summarised below:

System Quantity Description

Hosting Servers 32 2x Intel X5550, 24GB RAM,  
Mellanox MT26428 IB, 1Gbe,  
2x PCIe Gen2 x16 interfaces

NVidia Tesla S1070 32 2x PCIe Gen2 x16 channels to server 2x 
Tesla C1060 GPUs per channel, each with

• 4GB global memory (not ECC)
• 240 cores
• 933 Gflop/s (single precision)
• 78 Gflop/s (double precision) 

B. Background
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In general the allocation of jobs to a multicore compute node is complicated by the need to ensure 
that jobs do not stray into resources allocated to other jobs. Failure to do this can easily result in 
unpredictable performance and even failure for one or both jobs. Furthermore for NUMA nodes (such 
as those with Intel Nehalem/Westmere CPUs), correct process pinning and memory locality is often 
important for proper performance – handling this for multiple jobs sharing the same node is a non-
trivial task, as it is for large NUMA systems. The addition of GPUs to such a node complicates matters 
further, extending the problems of segregation and affinity to the GPUs as well, and in this case the tools 
available for control are somewhat less developed (if they even exist) than the analogous utilities for 
CPUs (cpusets, numactl, taskset). 

For the production system at Cambridge, this problem is greatly simplified by a general policy that only 
one job may run on a node at any one time. This reduces the issue to the proper placement of a single 
job across all available CPU cores and GPUs. The typical job uses MPI (either Intel MPI or MVAPICH2) 
for communication between up to eight CPU tasks per node, each of which may also dispatch CUDA 
kernels to one of the four GPUs in the S1070. Whereas CPU pinning and host memory locality may be 
assisted by features in the MPI implementation, there is no standard mechanism for arranging proper

C. Integration into the HPC Production Environment

C.1. Scheduler configuration

Figure 1. Darwin GPU computational unit (256 Nehalem cores, 128 GPUs)
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affinity between CPU core and GPU, although the cuda_wrapper library from NCSA offers a possible 
way to do this by overriding CUDA calls. Bandwidth measurements between workstation host and Tesla 
device suggest that arranging proper affinity may be beneficial (see below). So far the Darwin GPU 
cluster hasn’t fine-tuned for this but in principle the scheduling system prologue script described below 
could be extended to use cuda_wrapper.
 
A further policy decision requires that only jobs using GPUs may run on the GPU unit. Thus the selection 
of GPU-enabled nodes can be reduced to a simple choice of queue or runtime environment configured 
in the scheduling system. In our case, using Moab/Torque the Moab scheduler then restricts visibility of 
this queue (or class in Moab terminology) to nodes in the GPU computational unit (Tesla01 – Tesla32) 
with a directive such as:

The REQUIREDQOSLIST clause lists the allowed qualities of service (QOSs) in the Tesla queue (in this 
case, all of them). In order to allow interactive jobs on the GPU nodes, which are granted higher priority 
and intended for development work, there is also the Tesla-int queue/class, controlled in Moab with:

(the INTR QOS in this case being allowed only). 

For a time we wished to allow access to the Tesla nodes from the default Torque queue. It was then 
necessary to allow jobs to specify a requirement for GPU – this was done by assigning each Tesla node  
a “GPU” consumable resource, with a node definition within Moab like the following:

Jobs requiring GPU would then indicate this at submission time in the resource string, e.g.

As with any compute node in a cluster, two types of script are required (at least) in order to monitor the 
health and usability of a GPU node. The presence of GPU hardware necessitates the introduction of new 
tests in addition to those needed by a pure CPU/IB node.

CLASSCFG[tesla] HOSTLIST=r:tesla[01-32]REQUIREDQOSLIST=QOS1,QOS2,QOS3,SUPPORT

CLASSCFG[tesla-int] HOSTLIST=r:tesla[01-32] REQUIREDQOSLIST=INTR

NODECFG[tesla01] RACK=25 SLOT=1 GRES=GPU

$ qsub -l nodes=2:ppn=8,mem=24000mb,gres=GPU jobscript

C.2. Node scripts
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C.2.1 Health check script

As with other schedulers, such as LSF or Grid Engine, the Torque pbs_mom daemon, which runs on 
each node and is responsible managing jobs sent to the node, can be configured to run a health check 
script periodically. On Darwin this is done by adding two lines to the /var/spool/PBS/mom_priv/config 
file on each node:

pbs_mom then runs compute_node_check.sh every 15 minutes. The script is executed as root, and if  
it blocks, so does pbs_mom. If the script detects an issue with the node, it is required to send a string  
to standard output of the form ERROR: error message. Moab’s default response to this is to mark the  
node down. 

The aim of a health check script is to promptly detect a problem with a node that would either need to 
be corrected before jobs are sent to it, or that would require a running job to be requeued and rerun 
elsewhere for successful completion. The script needs to run at regular intervals, whether or not a job 
is already present, however that places limitations on what it can safely be allowed to test. For example, 
probes to the hardware may well be unsuccessful if a job holds the devices open, and transient timeout 
issues with Lustre or NFS mounts, from which jobs should safely recover, should not lead to a requeue 
of the job. In short, health checks should be sufficiently non-aggressive that they can coexist with 
running jobs. 
 
Another possible role for a health check script is to purge left over processes belonging to users whose 
jobs have ended, so that these don’t continue to consume resources. 

The GPU node health check script performs the following checks. A failed check causes the whole 
script to signal ERROR unless indicated:
 

Basic checks 
 
 1. Is the local disk writable?

 2. Is NIS running? If not, quietly restart ypbind but don’t signal failure.

 3.  Check for unavailable Lustre OSTs. If any are found, quietly down up the data network interfaces 
but don’t signal failure. This test is only performed during periodic health checks.

 4. Purge all user processes and block SSH logins if there are no active jobs (no failures signalled).  
 
This test is only performed during periodic health checks. 
 

Infiniband checks
 
 1. Verify that the Infiniband devices are present.

 2. Verify the link status and reported data rate for the expected devices.

$node_check_script /var/spool/PBS/mom_priv/compute_node_check.sh

$node_check_interval 20              # i.e. 15 minutes in 45 sec mom intervals
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GPU-specific checks 
 
1. Run the /usr/bin/nvidia-smi utility (included in the driver package) and verify:
 • the reported number of GPUs is 4
 • air intake and per GPU temperature readings are less than 35 and 75 deg C respectively
 • fan, PSU and LED status are all OK.

2. Run the deviceQuery SDK example program and verify that for each GPU:
 • there is 4GB of global memory
 • the kernel run time limit is set to ‘No’
 • the test result is ‘PASSED’.

Basic checks 
 
 1. Does a NIS lookup succeed? If not, restart ypbind, retry and signal failure if there is still no success.

 2. Check all network filesystems are listed as mounted.

 3. Check all network filesystems report usage figures with df.

 4.  Purge all user processes belonging to users other than the owner of the job and allow the owner 
interactive access via SSH (no failures signalled).

 5.  Delete all files from local node storage that do not belong to the owner of the job  
(no failures signalled).

All popular schedulers provide the option of running a prologue script, which executes immediately 
prior to the execution of the job script on the execution host. The pbs_mom daemon will execute a 
custom prologue script as root just before a job sent to the node is executed. If the node is the master 
node in the set of nodes allocated to the job, the script /var/spool/PBS/mom_priv/prologue is run; the 
remaining nodes instead run /var/spool/PBS/mom_priv/prologue.parallel. For Darwin nodes, these two 
files are symbolic links to the same script. 

The aim of a prologue script is to verify the node’s readiness to run the job, and to perform any 
necessary preparation. Since in our configuration, only one job at any time runs on a given node, these 
checks can be relatively aggressive, can assume exclusive access to devices, and can take whatever 
steps are required to restore a proper state without worrying about disturbing current user processes.
 
Another function of the prologue script is to set up interactive access to the node via SSH for the owner 
of the job. 

The GPU node prologue script performs the same checks as the health check script, plus an additional 
set. A failed check causes global failure unless indicated, in which case the pbs_mom daemon is shut 
down (by the script) after a short delay. This in turn causes Moab to record node failure and to requeue 
the job. If the prologue does not return after a configurable delay of 5 minutes, the node is also marked 
down (by Torque). The additional checks performed are described below:

C.2.2 Job prologue script
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GPU-specific checks  
 
Note that to minimise variation these are performed via numactl so as to lock the tests onto a particular 
CPU core with only local memory allocation, i.e. via

1. Use /usr/bin/nvidia-smi to ensure that the mode of each GPU is correct:
 • either all Exclusive (load balancing between GPUs, but only one context each)
 • or all Normal (no load balancing, but contexts can share a GPU).
 
At the moment, all GPUs are placed into the Exclusive mode, as this works best for our current mix of 
applications. By extending the idea of consumable GPU resource we will probably soon allow jobs to 
select the best mode through the resource requirement string.

2. Run the bandwidthTest SDK example program and verify that for each GPU:
 • host to device bandwidth is as expected (4860MB/sec with 1% tolerance)
 • the test result is ‘PASSED’.

3. Run the matrixMul SDK example program and verify that for each GPU:
 • computational performance is as expected (86.6Gflop/s with 1% tolerance)
 • the test result is ‘PASSED’.
 
BandwidthTest measures the speed at which data can be copied from host memory to GPU global 
memory. Performance should be around 4000MB/sec, however initially we found it necessary to allow 
a large tolerance (20%) as results could easily vary in this range. This situation has improved markedly 
with the CUDA 3 compatible drivers and we have been able to tighten this to 4860MB/sec, or less by no 
more than 1%, but it is important to pass the –memory=pinned option to bandwidthTest for consistency. 
The matrixMul (linear algebra) sample program was initially even more variable, and for consistent results 
it was necessary to arrange for the script to perform the test three times and take the maximum value, 
in addition to allowing a tolerance of 20%. Also we found at first that as the GPUs were used, matrixMul 
performance consistently dropped until the prologue test always failed – a reboot was required in 
these cases to restore normal behaviour. The situation here is again much improved with the CUDA 3 
driver software, although the occasional outlying result from this test means that we have retained the 
triple testing in the prologue script. It is possible that the gradually declining performance observed 
initially was due to increasing numbers of remote memory accesses as local memory slowly became 
unavailable over time, and that the wrapping of the tests inside numactl would have been sufficient to 
solve the problem (this was an improvement made later). The current criterion for matrixMul success is 
at least 86.6Gflop/s, or less by no more than 1%.

The pbs_mom daemon in torque, as with the execution-host daemons associated with other scheduling 
systems, will also execute a custom epilogue script as root, just after a job exits. As in the case of the 
prologue, there are two forms of the epilogue script: if the node is the master node in the set of nodes 
allocated to the job, the script /var/spool/PBS/mom_priv/epilogue is run, whereas the remaining nodes 
instead run /var/spool/PBS/mom_priv/epilogue. parallel. For Darwin nodes, these two files are again 
symbolic links to the same script.

numactl --physcpubind=3 --membind=0 check_script

C.2.3 Job epilogue script
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The main aim of an epilogue script is to perform any extra steps that may be necessary to restore the 
node to a state in which it is fit to accept the next job. Note that the purging of rogue processes takes 
place in the health check script and prologue, rather than in the epilogue - this is designed to allow a 
user accessing the node interactively a window in which they may cleanly log out, or commence a new 
job, without experiencing a sudden hiatus. Only the GPU nodes in Darwin run a non-trivial epilogue 
script, specifically to purge the Tesla hardware. Again, since in our configuration only one job at any time 
is running, the epilogue script need not protect against affecting jobs still in progress.
 
The epilogue runs two utilities, both freely downloadable from NCSA: 
 
cuda_memscrubber
 
This is distributed as part of the cuda_wrapper package. It allocates all available GPU device memory 
in order to clear any data put there by the preceding job. This is highly desirable in order to ensure that 
private data cannot leak to other users. It is invoked with

where gpu.txt contains a device number per line: 0, 1, 2, 3.

cuda_memtest
 
This utility runs a quick stress test on each GPU and its global memory in order to verify the continued 
correct operation of both. This will detect, for example, a GPU left in a bad state by the previous job.  
It will also attempt to verify the correct functioning of each global memory by writing patterns and 
reading them back. It is invoked with

At the time of writing (December 2010), the Darwin GPU computational unit has been running user 
code since March 2010. The code run the most (by some margin) has been turbostream, a structured 
multi-block flow solver for flows in turbomachines developed by Tobias Brandvik, Graham Pullan and 
John Denton at the Whittle Laboratory at the University of Cambridge. This is a multi-node, MPI code 
using four CPU cores and four GPUs per node, and has to date accumulated around 400.000 (CPU) 
core hours of run time on Darwin. Several other projects are actively developing CUDA code on a 
smaller scale. 

Initially, the GPU nodes were using CUDA 2.3 compatible drivers and libraries. Stability during this period 
was a notable issue, and it was common for nodes to reboot between jobs, either because the epilogue 
script registered a problem, or because the matrixMul test’s performance during the prologue had 
become consistently poor. Earlier driver versions have also been reported to occasionally leave GPUs in 
an inoperable state, which could be worked around by reloading the kernel driver. These problems are 
not observed now that the CUDA 3 drivers and libraries are in use.

cuda_memscrubber -g gpu.txt

cuda_memtest --stress --num_passes 1 --num_iterations 100 

D. Production experiences
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With regard to hardware reliability, we have seen four faults in a batch of 32 S1070 units after nine 
months of use: two S1070s no longer detect all four GPUs, and another two generate memory errors 
during cuda_memtest.

In our introduction of a Tesla-based, GPU computational unit to the Darwin cluster we have found it 
particularly important to have good health checking and prologue/epilogue scripts to identify nodes in 
a sub-optimal state. The need for this at present is greater than for a normal compute node with only 
Infiniband hardware added, although there has been a notable improvement in stability in going from 
the CUDA 2.3 to CUDA 3 compatible drivers. In addition, there are special concerns such as the need to 
ensure data security by wiping GPU memory between jobs. 

The policies enforced on Darwin, specifically the restriction of only one job at any one time on a node, 
simplify the issue of efficient resource allocation, which would be critical in a situation in which several 
jobs, perhaps belonging to different users, would need to be granted access to a subset of CPU cores, 
main memory and GPUs concurrently. On the host side, the natural approach would be to create 
disjoint cpusets for each job, perhaps in combination with numactl to optimise the locality of memory 
and cores. There is some support in recent versions of Torque for allocating cpusets on NUMA systems. 
The analogous approach with Tesla GPUs would be to make use of the features of NCSA’s cuda_
wrapper library, which overrides CUDA calls made by jobs in such a way that only a particular subset 
of GPUs is visible to the application. Although there is no counterpart of CPU-memory locality on the 
GPU side (because of the way entire grids of CUDA thread blocks are dispatched, all running the same 
CUDA kernel, one at a time to a given GPU), there is still an issue of non-uniform memory bandwidth 
when copying data between different CPU cores and a fixed GPU. This non-uniformity can be measured 
directly: using bandwidthTest bound to each CPU core in turn (with memory allocated locally) via 
numactl, the device-to-host and host-to-device bandwidths to the memory in a fixed GPU can be 
ascertained, e.g. the command-line

reports bandwidth in MB/s from GPU device 0 to core 0. It is clear from Table 1 that physical socket 1 
(as seen from /proc/cpuinfo, this socket corresponds to cores 0-3) has a reduced bandwidth to and 
from the GPU devices relative to socket 0 (cores 4-7). 
 
Table 1.  
CPU/GPU affinity as measured by bandwidthTest. Socket 1 (cores 0-3) has reduced bandwidth to the GPUs.

E. Conclusions and future developments

numactl --physcpubind=0 --localalloc \

./bandwidthTest  --device=0 --dtoh --memory=pinned --noprompt

Direction of transfer Cores 0-3 (MB/sec) Cores 4-7 (MB/sec)

device to host 1950 3400

host to device 4860 5530
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The cuda_wrapper library also provides a mechanism for binding processes to CPU cores with optimal  
bandwidth to the allocated GPUs. Exploring this as a way of improving code performance, in conjunction 
with cpusets and numactl, is an item on our agenda. 
 
The current version of CUDA contains limited internal support for resource sharing, through the concept 
of compute modes (see Table 2). 

Table 2. GPU compute modes supported by CUDA

Some codes, e.g. turbostream, require the use of exclusive mode, and this is the mode currently set on 
the Darwin GPU nodes. Other codes perform better if allowed to oversubscribe GPUs, which would 
require normal mode; a minor modification to our Moab/Torque configuration and prologue scripts 
would be needed to incorporate this possibility. Ideally, there would be an additional mode in which 
different processes were allowed to share GPUs if necessary, but those not specifying a particular GPU 
device would be sent automatically to the least busy device; for situations involving a single job per 
node, this would probably be sufficient.

Finally, we hope to be in a position to test some Tesla 20-series (“Fermi”) units soon – these have ECC 
memory (unlike the 10-series units described here) and significantly improved double-precision floating 
point performance (515 Gflop/s compared to 78Gflop/s).

Compute Mode Description

Normal Kernels from multiple host threads may run on 
the GPU device. If no particular device is  
specified, this can lead to multiple threads  
contending for the default device (device 0).

Exclusive Only one host thread may run kernels on the 
GPU device at any given time, however if no  
particular device is specified and the default  
device is unavailable , another device is tried. 
Thus this provides simple load balancing, but  
no oversubscription of GPUs is possible.

Prohibited No CUDA kernels may run on the GPU device.

10 GPU Whitepaper  | © Dell



The hardware is described briefly in the introduction section to this paper. The T5500 workstations were 
chosen because, at the time, these were the only possibilities for Nehalem servers equipped with both 
twin PCIe Gen2x16 interfaces (to accept the interface cards required by the S1070) and one 8-way PCIe 
slot as required by the Infiniband card. The workstations were racked horizontally (4U each), with one 
Tesla S1070 unit each (1U) sitting directly on top of the server and eight 5U workstation/Tesla systems 
were mounted in a single 42U rack, with the whole solution being housed across four racks. A fifth 
rack contained the Mellanox QDR switches (creating a non-blocking Infiniband cluster across the 32 
nodes), and a 1Gbit/s ethernet switch providing connection to the management/data ethernet network, 
completed the physical configuration (see Figure 1). 
 
A.1. Bios settings

The BIOS on the T5500 nodes is version A04. The following settings were chosen:

 1. Boot order: NIC first

 2. NUMA (no memory interleaving) 

 3. Logical processors disabled

 4. Turbomode enabled

 5. Cstates enabled

A.2. Software configuration

All nodes use Scientific Linux 5 as their primary operating system, provisioned using a modified 
ClusterVisionOS stack (image-based). The new features of the GPU nodes required that the images 
include the appropriate Mellanox-modified OpenFabrics software stack plus proprietary low-level 
mlx4_ib driver for the ConnectX2 IB card, and of course the proprietary NVIDIA CUDA-enabled graphics 
drivers for the Tesla GPUs (as downloaded from the respective vendor web sites). 

The current OpenFabrics stack is OFED-1.5.1-mlnx9 from Mellanox, on top of which GPU jobs requiring 
MPI use either Intel MPI 4.0.0.028 or MVAPICH2 1.5.1p1. The version of Lustre used is 1.8.4, initially 
connecting to the shared storage via the tcp driver over gigabit ethernet, and later via o2ib over  
QDR Infiniband.
 
At the time of installation, the current NVIDIA drivers were version 190.53, supporting CUDA 2.3. At the 
time of writing, we are using version 260.19.12 (supporting CUDA 3.2). 
 
A.3. NVIDIA software installation 

Three packages are required (freely downloadable from the NVIDIA web site):

 • Developer drivers for 64-bit Linux
  — packaged as devdriver_3.2_linux_64_260.19.12.run
  — contains hardware driver and runtime libraries.

 • CUDA toolkit for 64-bit RedHat Enterprise Linux 5.5
  —  packaged as cudatoolkit_3.2.9_linux_64_rhel5.5.run
  — contains CUDA development tools and libraries.

 • GPU computing SDK code samples
  — packaged as gpucomputingsdk_3.2_linux.run
  — contains sample codes (graphical and non-graphical).

A. Appendix A – Hardware and Software configurations
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A.3.1. Developer drivers 

The package replaces some libraries installed by the distribution’s native mechanism, thus it is important 
to cleanly remove the NVIDIA package before applying distribution updates that might affect these 
libraries, e.g. any update RPMS of the form xorg-x11-*. Furthermore, at least the kernel module must be 
rebuilt whenever a new kernel is installed. 

The drivers should be installed on each GPU node – depending on the cluster management software 
employed this might mean performing the procedure explicitly on each node, or (as in the case of 
Darwin) performing it once on the appropriate image. 

In the following we assume that a clean install of the NVIDIA driver package is required, either because 
it is being updated, or because we wish to apply distribution updates that might interact with it. Firstly, 
remove any existing driver package by running the uninstall utility, if it exists:

This should return the system to a state consistent with the expectations of the distribution package 
management software (yum and rpm in the case of RedHat Enterprise/Scientific Linux/CentOS). At 
this point, any distribution updates or new kernels should be installed in the usual way. Next, run the 
embedded driver installation script. If (as in our case) you are running this inside an image via chroot, the 
script may try to build a kernel module against the incorrect kernel version – the correct version can be 
forced by specifying it as follows (here our GPU node kernel is 2.6.18-194.17.1.el5.darwin):

A series of curses screens then appear, displaying the license, warnings and options. If running inside an 
image, you may receive a warning about there being no supported card present – ignore this. Respond 
‘Yes’ to installing the 32-bit libraries. The support libraries and X11 components are then installed, and a 
kernel module built against the specified kernel. 

# nvidia-uninstall

# sh devdriver_3.2_linux_64_260.19.12.run --kernel-name=2.6.18-194.17.1.el5.darwin

$ sh cudatoolkit_3.2.9_linux_64_rhel5.5.run

Enter install path (default /usr/local/cuda, ‘/cuda’ will be appended): 

/usr/local/Cluster-Apps/cuda/3.2

A.3.2. CUDA Toolkit and SDK
 
The remaining packages (the toolkit and the SDK code samples) can be installed on a shared network 
filesystem. On Darwin an appropriate location was /usr/local/Cluster-Apps/cuda/3.2 (/usr/local being a 
NFS mount). This installation was not performed as root:
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Respond negatively to the question about uninstalling previous versions if, like us, you prefer to have 
several versions available accessible via modules. 

Having installed the toolkit, one needs to set up the appropriate environment – the module file used on 
Darwin is appended below, however the same environment variables (PATH, MANPATH, CPATH, FPATH, 
LIBRARY_PATH and LD_LIBRARY_PATH) can be set directly in the user’s shell initialization scripts: 

#%Module -*- tcl -*-
##
## dot modulefile
##
proc ModulesHelp { } {
  puts stderr “\tAdds NVIDIA CUDA 3.2 (and gcc 4.3.3) to your environment.\n”
  puts stderr “\tThe SDK may be copied from:”
  puts stderr “\t/usr/local/Cluster-Apps/cuda/3.2/NVIDIA_GPU_Computing_SDK\n”
}
module-whatis “adds NVIDIA CUDA 3.2 (and gcc 4.3.3) to your environment”
module add gcc/4.3.3
set               root              /usr/local/Cluster-Apps/cuda/3.2/cuda
setenv            CUDA_INSTALL_PATH $root
prepend-path      PATH              $root/bin:$root/computeprof/bin
prepend-path      MANPATH           $root/man
prepend-path      CPATH             $root/include
prepend-path      FPATH             $root/include
prepend-path      LIBRARY_PATH      $root/lib64:$root/lib
prepend-path      LD_LIBRARY_PATH   $root/lib64:$root/lib:$root/computeprof/bin 
 
Having initialized the user environment (either manually or by loading a module such as the one above) 
the SDK can be installed:

The final step is to actually build the code samples – note that this needs to be done on a GPU node on 
which the driver package has been installed:

$ mkdir /usr/local/Cluster-Apps/cuda/3.2/NVIDIA_GPU_Computing_SDK

$ sh gpucomputingsdk_3.2_linux.run

Enter install path (default ~/NVIDIA_GPU_Computing_SDK): 

/usr/local/Cluster-Apps/cuda/3.2/NVIDIA_GPU_Computing_SDK

cd /usr/local/Cluster-Apps/cuda/3.2/NVIDIA_GPU_Computing_SDK/C

make x86_64=1
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Some of these (e.g. fluidsGL, smokeParticles) produce graphical output – sadly it appears to be no 
longer possible to configure a node with a Tesla attached to perform off-screen, hardware-accelerated 
OpenGL, so there is little point trying to run these on a GPU node. Other purely command-line utilities 
such as deviceQuery, bandwidthTest and matrixMul are useful for node health checking, as  
described above.

/usr/local/Cluster-Apps/cuda/3.2/NVIDIA_GPU_Computing_SDK/C/bin/linux/release

The compiled code samples are installed into
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